--- library_name: transformers language: - ko license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer datasets: - didiudom94/gentlemen2 metrics: - wer model-index: - name: Whisper Large-V3 Ko to En results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Gentlemen type: didiudom94/gentlemen2 args: 'split: train' metrics: - name: Wer type: wer value: 0.7630289773857083 --- # Whisper Large-V3 Ko to En This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Gentlemen dataset. It achieves the following results on the evaluation set: - Loss: 1.1304 - Wer: 0.7630 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 1.2511 | 0.4507 | 1000 | 1.2619 | 0.7806 | | 1.1681 | 0.9013 | 2000 | 1.1703 | 0.7751 | | 0.9217 | 1.3520 | 3000 | 1.1486 | 0.7768 | | 0.9093 | 1.8026 | 4000 | 1.1304 | 0.7630 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.20.3