--- license: openrail++ base_model: stabilityai/stable-diffusion-xl-base-1.0 tags: - stable-diffusion-xl - stable-diffusion-xl-diffusers - text-to-image - diffusers - controlnet inference: false --- # SDXL-controlnet: Depth These are controlnet weights trained on stabilityai/stable-diffusion-xl-base-1.0 with depth conditioning. You can find some example images in the following. prompt: spiderman lecture, photorealistic ![images_0)](./spiderman.png) ## Usage Make sure to first install the libraries: ```bash pip install accelerate transformers safetensors diffusers ``` And then we're ready to go: ```python import torch import numpy as np from PIL import Image from transformers import DPTFeatureExtractor, DPTForDepthEstimation from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL from diffusers.utils import load_image depth_estimator = DPTForDepthEstimation.from_pretrained("Intel/dpt-hybrid-midas").to("cuda") feature_extractor = DPTFeatureExtractor.from_pretrained("Intel/dpt-hybrid-midas") controlnet = ControlNetModel.from_pretrained( "diffusers/controlnet-depth-sdxl-1.0", variant="fp16", use_safetensors=True, torch_dtype=torch.float16, ).to("cuda") vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16).to("cuda") pipe = StableDiffusionXLControlNetPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", controlnet=controlnet, vae=vae, variant="fp16", use_safetensors=True, torch_dtype=torch.float16, ).to("cuda") pipe.enable_model_cpu_offload() def get_depth_map(image): image = feature_extractor(images=image, return_tensors="pt").pixel_values.to("cuda") with torch.no_grad(), torch.autocast("cuda"): depth_map = depth_estimator(image).predicted_depth depth_map = torch.nn.functional.interpolate( depth_map.unsqueeze(1), size=(1024, 1024), mode="bicubic", align_corners=False, ) depth_min = torch.amin(depth_map, dim=[1, 2, 3], keepdim=True) depth_max = torch.amax(depth_map, dim=[1, 2, 3], keepdim=True) depth_map = (depth_map - depth_min) / (depth_max - depth_min) image = torch.cat([depth_map] * 3, dim=1) image = image.permute(0, 2, 3, 1).cpu().numpy()[0] image = Image.fromarray((image * 255.0).clip(0, 255).astype(np.uint8)) return image prompt = "stormtrooper lecture, photorealistic" image = load_image("https://huggingface.co/lllyasviel/sd-controlnet-depth/resolve/main/images/stormtrooper.png") controlnet_conditioning_scale = 0.5 # recommended for good generalization depth_image = get_depth_map(image) images = pipe( prompt, image=depth_image, num_inference_steps=30, controlnet_conditioning_scale=controlnet_conditioning_scale, ).images images[0] images[0].save(f"stormtrooper.png") ``` To more details, check out the official documentation of [`StableDiffusionXLControlNetPipeline`](https://huggingface.co/docs/diffusers/main/en/api/pipelines/controlnet_sdxl). ### Training Our training script was built on top of the official training script that we provide [here](https://github.com/huggingface/diffusers/blob/main/examples/controlnet/README_sdxl.md). #### Training data and Compute The model is trained on 3M image-text pairs from LAION-Aesthetics V2. The model is trained for 700 GPU hours on 80GB A100 GPUs. #### Batch size Data parallel with a single gpu batch size of 8 for a total batch size of 256. #### Hyper Parameters Constant learning rate of 1e-5. #### Mixed precision fp16