#!/usr/bin/env python3 from diffusers import StableDiffusionInpaintPipeline import requests import torch from PIL import Image from io import BytesIO import os from pathlib import Path from huggingface_hub import HfApi api = HfApi() url = "https://raw.githubusercontent.com/CompVis/stable-diffusion/main/assets/stable-samples/img2img/sketch-mountains-input.jpg" def download_image(url): response = requests.get(url) return Image.open(BytesIO(response.content)).convert("RGB") img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" init_image = download_image(img_url).resize((512, 512)) mask_image = download_image(mask_url).resize((512, 512)) path = "runwayml/stable-diffusion-inpainting" run_compile = True # Set True / False pipe = StableDiffusionInpaintPipeline.from_pretrained(path, torch_dtype=torch.float16) pipe = pipe.to("cuda:0") torch.manual_seed(33) prompt = "A cute dog" image = pipe(prompt=prompt, image=init_image, mask_image=mask_image, force_unmasked_unchanged=True).images[0] # image = pipe(prompt=prompt, image=init_image, mask_image=mask_image, force_unmasked_unchanged=False).images[0] file_name = "aa" path = os.path.join(Path.home(), "images", f"{file_name}.png") image.save(path) api.upload_file( path_or_fileobj=path, path_in_repo=path.split("/")[-1], repo_id="patrickvonplaten/images", repo_type="dataset", ) print(f"https://huggingface.co/datasets/patrickvonplaten/images/blob/main/{file_name}.png")