#!/usr/bin/env python3 import torch import os from huggingface_hub import HfApi from pathlib import Path from diffusers.utils import load_image from PIL import Image import numpy as np from transformers import pipeline from diffusers import ( ControlNetModel, StableDiffusionControlNetPipeline, UniPCMultistepScheduler, ) import sys checkpoint = sys.argv[1] image = load_image("https://huggingface.co/lllyasviel/sd-controlnet-depth/resolve/main/images/stormtrooper.png") prompt = "Stormtrooper's lecture in beautiful lecture hall" depth_estimator = pipeline('depth-estimation') image = depth_estimator(image)['depth'] image = np.array(image) image = image[:, :, None] image = np.concatenate([image, image, image], axis=2) image = Image.fromarray(image) controlnet = ControlNetModel.from_pretrained(checkpoint, torch_dtype=torch.float16) pipe = StableDiffusionControlNetPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16 ) pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) pipe.enable_model_cpu_offload() generator = torch.manual_seed(0) out_image = pipe(prompt, num_inference_steps=40, generator=generator, image=image).images[0] path = os.path.join(Path.home(), "images", "aa.png") out_image.save(path) api = HfApi() api.upload_file( path_or_fileobj=path, path_in_repo=path.split("/")[-1], repo_id="patrickvonplaten/images", repo_type="dataset", ) print("https://huggingface.co/datasets/patrickvonplaten/images/blob/main/aa.png")