--- license: mit base_model: microsoft/deberta-v3-base tags: - generated_from_trainer metrics: - accuracy - precision - recall - f1 model-index: - name: my_awesome_model results: [] --- [Visualize in Weights & Biases](https://wandb.ai/ivkovicdanica555-Student/huggingface/runs/4649rwz9) # my_awesome_model This model is a fine-tuned version of [microsoft/deberta-v3-base](https://huggingface.co/microsoft/deberta-v3-base) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4386 - Accuracy: 0.8569 - Precision: 0.8576 - Recall: 0.8571 - F1: 0.8559 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:| | 0.5211 | 1.0 | 5000 | 0.5037 | 0.8327 | 0.8408 | 0.8331 | 0.8294 | | 0.4159 | 2.0 | 10000 | 0.4410 | 0.8517 | 0.8546 | 0.8520 | 0.8519 | | 0.3468 | 3.0 | 15000 | 0.4386 | 0.8569 | 0.8576 | 0.8571 | 0.8559 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1