--- inference: false license: apache-2.0 ---

# LLaVA Model Card ## SGLang This contains the necessary files to run LLaVA-1.6 34B on SGLang. You can run the server with the following command: `python -m sglang.launch_server --model-path dillonlaird/hf-llava-v1.6-34b --port 30000` There seems to be issues with the chat formatting when using the sglang interface so I recommend querying the server directly and formatting the string yourself: ```python import requests from transformers import AutoTokenizer def generate(image_path: str, prompt: str, tokenizer): chat = [ {"role": "system", "content": "Answer the question."}, {"role": "user", "content": "\n" + prompt}, ] chat_str = tokenizer.apply_chat_template(chat, tokenize=False) chat_str += "<|img_start|>assistant\n" sampling_params = {"temperature": 0.2, "max_new_tokens": 1536} res = requests.post( "http://localhost:30000/generate", json={ "text": chat_str, "image_data": image_path, "sampling_params": sampling_params, }, ) return res.json()["text"] if __name__ == "__main__": tokenizer = AutoTokenizer.from_pretrained("liuhaotian/llava-v1.6-34b") image_path = "path/to/image.jpg" prompt = "What is the name of the mountain?" desc = generate(image_path, prompt, tokenizer) ``` ## Model details **Model type:** LLaVA is an open-source chatbot trained by fine-tuning LLM on multimodal instruction-following data. It is an auto-regressive language model, based on the transformer architecture. Base LLM: [NousResearch/Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B) **Model date:** LLaVA-v1.6-34B was trained in December 2023. **Paper or resources for more information:** https://llava-vl.github.io/ ## License [NousResearch/Nous-Hermes-2-Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B) license. **Where to send questions or comments about the model:** https://github.com/haotian-liu/LLaVA/issues ## Intended use **Primary intended uses:** The primary use of LLaVA is research on large multimodal models and chatbots. **Primary intended users:** The primary intended users of the model are researchers and hobbyists in computer vision, natural language processing, machine learning, and artificial intelligence. ## Training dataset - 558K filtered image-text pairs from LAION/CC/SBU, captioned by BLIP. - 158K GPT-generated multimodal instruction-following data. - 500K academic-task-oriented VQA data mixture. - 50K GPT-4V data mixture. - 40K ShareGPT data. ## Evaluation dataset A collection of 12 benchmarks, including 5 academic VQA benchmarks and 7 recent benchmarks specifically proposed for instruction-following LMMs.