--- library_name: peft base_model: katuni4ka/tiny-random-falcon-40b tags: - axolotl - generated_from_trainer model-index: - name: 215b0d7a-ffe6-4846-9c5e-b572c0e8e862 results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml adapter: lora base_model: katuni4ka/tiny-random-falcon-40b bf16: auto chat_template: llama3 dataset_prepared_path: null datasets: - data_files: - 1ed05c663c7d03c9_train_data.json ds_type: json field: text path: /workspace/input_data/1ed05c663c7d03c9_train_data.json type: completion debug: null deepspeed: null early_stopping_patience: null eval_max_new_tokens: 128 eval_table_size: null evals_per_epoch: 3 flash_attention: false fp16: null fsdp: null fsdp_config: null gradient_accumulation_steps: 6 gradient_checkpointing: true group_by_length: false hub_model_id: dimasik87/215b0d7a-ffe6-4846-9c5e-b572c0e8e862 hub_repo: null hub_strategy: checkpoint hub_token: null learning_rate: 0.0001 load_in_4bit: false load_in_8bit: false local_rank: null logging_steps: 1 lora_alpha: 64 lora_dropout: 0.05 lora_fan_in_fan_out: null lora_model_dir: null lora_r: 32 lora_target_linear: true lr_scheduler: cosine max_memory: 0: 70GiB max_steps: 50 micro_batch_size: 4 mlflow_experiment_name: /tmp/1ed05c663c7d03c9_train_data.json model_type: AutoModelForCausalLM num_epochs: 3 optimizer: adamw_torch output_dir: miner_id_24 pad_to_sequence_len: true resume_from_checkpoint: null s2_attention: null sample_packing: false save_steps: 25 save_strategy: steps sequence_len: 2048 special_tokens: pad_token: <|endoftext|> strict: false tf32: false tokenizer_type: AutoTokenizer torch_dtype: bfloat16 train_on_inputs: false trust_remote_code: true val_set_size: 0.05 wandb_entity: null wandb_mode: online wandb_name: 215b0d7a-ffe6-4846-9c5e-b572c0e8e862 wandb_project: Gradients-On-Demand wandb_run: your_name wandb_runid: 215b0d7a-ffe6-4846-9c5e-b572c0e8e862 warmup_steps: 10 weight_decay: 0.01 xformers_attention: null ```

# 215b0d7a-ffe6-4846-9c5e-b572c0e8e862 This model is a fine-tuned version of [katuni4ka/tiny-random-falcon-40b](https://huggingface.co/katuni4ka/tiny-random-falcon-40b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 10.9848 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 6 - total_train_batch_size: 24 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - training_steps: 50 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 66.6603 | 0.0003 | 1 | 11.1075 | | 66.6068 | 0.0015 | 6 | 11.1015 | | 66.4966 | 0.0030 | 12 | 11.0795 | | 66.2697 | 0.0046 | 18 | 11.0519 | | 66.2157 | 0.0061 | 24 | 11.0262 | | 66.0429 | 0.0076 | 30 | 11.0060 | | 65.9892 | 0.0091 | 36 | 10.9927 | | 65.8852 | 0.0107 | 42 | 10.9864 | | 65.9682 | 0.0122 | 48 | 10.9848 | ### Framework versions - PEFT 0.13.2 - Transformers 4.46.0 - Pytorch 2.5.0+cu124 - Datasets 3.0.1 - Tokenizers 0.20.1