--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: emotion_classification results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: FastJobs--Visual_Emotional_Analysis split: train[:-1] args: FastJobs--Visual_Emotional_Analysis metrics: - name: Accuracy type: accuracy value: 0.5625 --- # emotion_classification This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 1.6256 - Accuracy: 0.5625 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.00025 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 15 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | No log | 1.0 | 10 | 1.7794 | 0.4875 | | No log | 2.0 | 20 | 1.6813 | 0.4938 | | 0.2276 | 3.0 | 30 | 1.7602 | 0.4875 | | 0.2276 | 4.0 | 40 | 1.9172 | 0.4562 | | 0.2048 | 5.0 | 50 | 1.9316 | 0.4625 | | 0.2048 | 6.0 | 60 | 1.8285 | 0.5 | | 0.2048 | 7.0 | 70 | 1.6341 | 0.5687 | | 0.1617 | 8.0 | 80 | 1.7461 | 0.5375 | | 0.1617 | 9.0 | 90 | 1.6544 | 0.5312 | | 0.1766 | 10.0 | 100 | 1.9449 | 0.4875 | | 0.1766 | 11.0 | 110 | 1.7565 | 0.5125 | | 0.1766 | 12.0 | 120 | 1.8936 | 0.5 | | 0.1979 | 13.0 | 130 | 1.6812 | 0.5687 | | 0.1979 | 14.0 | 140 | 1.7619 | 0.5188 | | 0.1694 | 15.0 | 150 | 1.6903 | 0.55 | ### Framework versions - Transformers 4.33.1 - Pytorch 1.12.1+cu116 - Datasets 2.4.0 - Tokenizers 0.12.1