--- language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - divakaivan/glaswegian_audio metrics: - wer model-index: - name: Glaswegian_Whisper results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Glaswegian audio type: divakaivan/glaswegian_audio config: default split: train args: default metrics: - name: Wer type: wer value: 40.5394016013485 --- Fine-tuned using [this notebook](https://colab.research.google.com/drive/1CCRr0rXts18cios1zaIZv7SxhCub-gu-?usp=sharing) # Glaswegian_Whisper This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Glaswegian audio dataset. It achieves the following results on the evaluation set: - Loss: 1.4788 - Wer: 40.5394 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0084 | 16.3934 | 1000 | 1.2802 | 38.5588 | | 0.0019 | 32.7869 | 2000 | 1.4141 | 39.0223 | | 0.0002 | 49.1803 | 3000 | 1.4553 | 40.3287 | | 0.0001 | 65.5738 | 4000 | 1.4788 | 40.5394 | ### Framework versions - Transformers 4.43.3 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1