--- language: - sr license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_1 metrics: - wer base_model: openai/whisper-large-v3 model-index: - name: Whisper Large v3 Sr - Slavko Djogic results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 16.1 type: mozilla-foundation/common_voice_16_1 args: 'Config: sr' metrics: - type: wer value: 17.2694 name: Wer --- # whisper-large-v3-sr This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Common Voice 16.1 dataset. It achieves the following results on the evaluation set: - Loss: 0.3961 - Wer: 17.2694 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0498 | 4.81 | 1000 | 0.2004 | 20.1799 | | 0.0042 | 9.62 | 2000 | 0.3225 | 18.2395 | | 0.0001 | 14.42 | 3000 | 0.3799 | 17.2694 | | 0.0001 | 19.23 | 4000 | 0.3961 | 17.2694 | ### Framework versions - Transformers 4.38.0.dev0 - Pytorch 2.1.1+cu121 - Datasets 2.16.1 - Tokenizers 0.15.1