--- tags: - flair - token-classification - sequence-tagger-model language: nl datasets: - conll2003 widget: - text: "George Washington ging naar Washington." --- # Important! Use transformers=4.30.2 and flair=0.12.2 because there is a [bug](https://github.com/flairNLP/flair/issues/3284) Took hander.py from [here](https://huggingface.co/philschmid/flair-ner-english-ontonotes-large) Original [model](https://huggingface.co/flair/ner-dutch) # Dutch NER in Flair (default model) This is the standard 4-class NER model for Dutch that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **92,58** (CoNLL-03) Predicts 4 tags: | **tag** | **meaning** | |---------------------------------|-----------| | PER | person name | | LOC | location name | | ORG | organization name | | MISC | other name | Based on Transformer embeddings and LSTM-CRF. --- # Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/ner-dutch") # make example sentence sentence = Sentence("George Washington ging naar Washington") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('ner'): print(entity) ``` This yields the following output: ``` Span [1,2]: "George Washington" [− Labels: PER (0.997)] Span [5]: "Washington" [− Labels: LOC (0.9996)] ``` So, the entities "*George Washington*" (labeled as a **person**) and "*Washington*" (labeled as a **location**) are found in the sentence "*George Washington ging naar Washington*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python from flair.data import Corpus from flair.datasets import CONLL_03_DUTCH from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. get the corpus corpus: Corpus = CONLL_03_DUTCH() # 2. what tag do we want to predict? tag_type = 'ner' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize embeddings embeddings = TransformerWordEmbeddings('wietsedv/bert-base-dutch-cased') # 5. initialize sequence tagger tagger: SequenceTagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer trainer: ModelTrainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/ner-dutch', train_with_dev=True, max_epochs=150) ``` --- ### Cite Please cite the following paper when using this model. ``` @inproceedings{akbik-etal-2019-flair, title = "{FLAIR}: An Easy-to-Use Framework for State-of-the-Art {NLP}", author = "Akbik, Alan and Bergmann, Tanja and Blythe, Duncan and Rasul, Kashif and Schweter, Stefan and Vollgraf, Roland", booktitle = "Proceedings of the 2019 Conference of the North {A}merican Chapter of the Association for Computational Linguistics (Demonstrations)", year = "2019", url = "https://www.aclweb.org/anthology/N19-4010", pages = "54--59", } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).