# Copyright (c) Meta Platforms, Inc. and affiliates. # All rights reserved. # # This source code is licensed under the license found in the # LICENSE file in the root directory of this source tree. """Compression models or wrapper around existing models. Also defines the main interface that a model must follow to be usable as an audio tokenizer. """ from abc import ABC, abstractmethod import logging import math from pathlib import Path import typing as tp from einops import rearrange import numpy as np import torch from torch import nn from transformers import EncodecModel as HFEncodecModel import audiocraft.quantization as qt logger = logging.getLogger() class CompressionModel(ABC, nn.Module): """Base API for all compression models that aim at being used as audio tokenizers with a language model. """ @abstractmethod def forward(self, x: torch.Tensor) -> qt.QuantizedResult: ... @abstractmethod def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: """See `EncodecModel.encode`.""" ... @abstractmethod def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None): """See `EncodecModel.decode`.""" ... @abstractmethod def decode_latent(self, codes: torch.Tensor): """Decode from the discrete codes to continuous latent space.""" ... @property @abstractmethod def channels(self) -> int: ... @property @abstractmethod def frame_rate(self) -> float: ... @property @abstractmethod def sample_rate(self) -> int: ... @property @abstractmethod def cardinality(self) -> int: ... @property @abstractmethod def num_codebooks(self) -> int: ... @property @abstractmethod def total_codebooks(self) -> int: ... @abstractmethod def set_num_codebooks(self, n: int): """Set the active number of codebooks used by the quantizer.""" ... @staticmethod def get_pretrained( name: str, device: tp.Union[torch.device, str] = 'cpu' ) -> 'CompressionModel': """Instantiate a CompressionModel from a given pretrained model. Args: name (Path or str): name of the pretrained model. See after. device (torch.device or str): Device on which the model is loaded. Pretrained models: - dac_44khz (https://github.com/descriptinc/descript-audio-codec) - dac_24khz (same) - facebook/encodec_24khz (https://huggingface.co/facebook/encodec_24khz) - facebook/encodec_32khz (https://huggingface.co/facebook/encodec_32khz) - your own model on Hugging Face. Export instructions to come... """ from . import builders, loaders model: CompressionModel if name in ['dac_44khz', 'dac_24khz']: model_type = name.split('_')[1] logger.info("Getting pretrained compression model from DAC %s", model_type) model = DAC(model_type) elif name in ['debug_compression_model']: logger.info("Getting pretrained compression model for debug") model = builders.get_debug_compression_model() elif Path(name).exists(): # We assume here if the path exists that it is in fact an AC checkpoint # that was exported using `audiocraft.utils.export` functions. model = loaders.load_compression_model(name, device=device) else: logger.info("Getting pretrained compression model from HF %s", name) hf_model = HFEncodecModel.from_pretrained(name) model = HFEncodecCompressionModel(hf_model).to(device) return model.to(device).eval() class EncodecModel(CompressionModel): """Encodec model operating on the raw waveform. Args: encoder (nn.Module): Encoder network. decoder (nn.Module): Decoder network. quantizer (qt.BaseQuantizer): Quantizer network. frame_rate (int): Frame rate for the latent representation. sample_rate (int): Audio sample rate. channels (int): Number of audio channels. causal (bool): Whether to use a causal version of the model. renormalize (bool): Whether to renormalize the audio before running the model. """ # we need assignment to override the property in the abstract class, # I couldn't find a better way... frame_rate: float = 0 sample_rate: int = 0 channels: int = 0 def __init__(self, encoder: nn.Module, decoder: nn.Module, quantizer: qt.BaseQuantizer, frame_rate: int, sample_rate: int, channels: int, causal: bool = False, renormalize: bool = False): super().__init__() self.encoder = encoder self.decoder = decoder self.quantizer = quantizer self.frame_rate = frame_rate self.sample_rate = sample_rate self.channels = channels self.renormalize = renormalize self.causal = causal if self.causal: # we force disabling here to avoid handling linear overlap of segments # as supported in original EnCodec codebase. assert not self.renormalize, 'Causal model does not support renormalize' @property def total_codebooks(self): """Total number of quantizer codebooks available.""" return self.quantizer.total_codebooks @property def num_codebooks(self): """Active number of codebooks used by the quantizer.""" return self.quantizer.num_codebooks def set_num_codebooks(self, n: int): """Set the active number of codebooks used by the quantizer.""" self.quantizer.set_num_codebooks(n) @property def cardinality(self): """Cardinality of each codebook.""" return self.quantizer.bins def preprocess(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: scale: tp.Optional[torch.Tensor] if self.renormalize: mono = x.mean(dim=1, keepdim=True) volume = mono.pow(2).mean(dim=2, keepdim=True).sqrt() scale = 1e-8 + volume x = x / scale scale = scale.view(-1, 1) else: scale = None return x, scale def postprocess(self, x: torch.Tensor, scale: tp.Optional[torch.Tensor] = None) -> torch.Tensor: if scale is not None: assert self.renormalize x = x * scale.view(-1, 1, 1) return x def forward(self, x: torch.Tensor) -> qt.QuantizedResult: assert x.dim() == 3 length = x.shape[-1] x, scale = self.preprocess(x) emb = self.encoder(x) q_res = self.quantizer(emb, self.frame_rate) out = self.decoder(q_res.x) # remove extra padding added by the encoder and decoder assert out.shape[-1] >= length, (out.shape[-1], length) out = out[..., :length] q_res.x = self.postprocess(out, scale) return q_res def encode(self, x: torch.Tensor) -> tp.Tuple[torch.Tensor, tp.Optional[torch.Tensor]]: """Encode the given input tensor to quantized representation along with scale parameter. Args: x (torch.Tensor): Float tensor of shape [B, C, T] Returns: codes, scale (tuple of torch.Tensor, torch.Tensor): Tuple composed of: codes: a float tensor of shape [B, K, T] with K the number of codebooks used and T the timestep. scale: a float tensor containing the scale for audio renormalization. """ assert x.dim() == 3 x, scale = self.preprocess(x) emb = self.encoder(x) codes = self.quantizer.encode(emb) return codes, scale def decode(self, codes: torch.Tensor, scale: tp.Optional[torch.Tensor] = None): """Decode the given codes to a reconstructed representation, using the scale to perform audio denormalization if needed. Args: codes (torch.Tensor): Int tensor of shape [B, K, T] scale (torch.Tensor, optional): Float tensor containing the scale value. Returns: out (torch.Tensor): Float tensor of shape [B, C, T], the reconstructed audio. """ emb = self.decode_latent(codes) out = self.decoder(emb) out = self.postprocess(out, scale) # out contains extra padding added by the encoder and decoder return out def decode_latent(self, codes: torch.Tensor): """Decode from the discrete codes to continuous latent space.""" return self.quantizer.decode(codes)