--- language: - en license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - PolyAI/minds14 metrics: - wer model-index: - name: Whisper tiny en - dlantonia results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: minds14 type: PolyAI/minds14 config: en-US split: train args: en-US metrics: - name: Wer type: wer value: 22.64957264957265 --- # Whisper tiny en - dlantonia This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the minds14 dataset. It achieves the following results on the evaluation set: - Loss: 0.6625 - Wer Ortho: 22.5602 - Wer: 22.6496 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: constant_with_warmup - lr_scheduler_warmup_steps: 50 - training_steps: 500 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer Ortho | Wer | |:-------------:|:-------:|:----:|:---------------:|:---------:|:-------:| | 0.0012 | 17.8571 | 500 | 0.6625 | 22.5602 | 22.6496 | ### Framework versions - Transformers 4.42.4 - Pytorch 2.3.1+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1