--- license: mit base_model: facebook/w2v-bert-2.0 tags: - generated_from_trainer datasets: - common_voice_7_0 metrics: - wer model-index: - name: w2v-bert-2.0-luganda-CV-train-validation-7.0 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: common_voice_7_0 type: common_voice_7_0 config: lg split: test args: lg metrics: - name: Wer type: wer value: 0.1933150003273751 --- # w2v-bert-2.0-luganda-CV-train-validation-7.0 This model is a fine-tuned version of [facebook/w2v-bert-2.0](https://huggingface.co/facebook/w2v-bert-2.0) on the Luganda mozilla common voices 7.0 dataset. We use the train and validation set for training and the test set for evaluation. When using this dataset, make sure that the audio has a sampling rate of 16kHz.It achieves the following results on the test set: - Loss: 0.2282 - Wer: 0.1933 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data The model was trained on version 7 of the Luganda dataset of Mozilla common voices dataset. We used the train and validation dataset for training and the test dataset for validation. ## Training procedure We trained the model on a 32 GB V100 GPU for 10 epochs using a learning rate of 5e-05. We used the AdamW optimizer. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 10 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:------:| | 1.1859 | 1.89 | 300 | 0.2854 | 0.2866 | | 0.1137 | 3.77 | 600 | 0.2503 | 0.2469 | | 0.0712 | 5.66 | 900 | 0.2043 | 0.2092 | | 0.0446 | 7.55 | 1200 | 0.2156 | 0.2005 | | 0.0269 | 9.43 | 1500 | 0.2282 | 0.1933 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.2.1+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2 ### Usage ```python import torch import torchaudio from datasets import load_dataset from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor test_dataset = load_dataset("common_voice", "lg", split="test[:10]") processor = Wav2Vec2Processor.from_pretrained("dmusingu/w2v-bert-2.0-luganda-CV-train-validation-7.0") model = Wav2Vec2ForCTC.from_pretrained("dmusingu/w2v-bert-2.0-luganda-CV-train-validation-7.0") resampler = torchaudio.transforms.Resample(48_000, 16_000) # Preprocessing the datasets. # We need to read the audio files as arrays def speech_file_to_array_fn(batch): speech_array, sampling_rate = torchaudio.load(batch["path"]) batch["speech"] = resampler(speech_array).squeeze().numpy() return batch test_dataset = test_dataset.map(speech_file_to_array_fn) inputs = processor(test_dataset[:2]["speech"], sampling_rate=16_000, return_tensors="pt", padding=True) with torch.no_grad(): logits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits predicted_ids = torch.argmax(logits, dim=-1) print("Prediction:", processor.batch_decode(predicted_ids)) print("Reference:", test_dataset["sentence"][:2]) ```