from urllib.request import urlopen import timm import torch from PIL import Image from imagenet_classes import IMAGENET2012_CLASSES model_name = "eva02_large_patch14_448.mim_m38m_ft_in22k_in1k" model = timm.create_model(model_name, pretrained=True).eval() data_config = timm.data.resolve_model_data_config(model) transforms = timm.data.create_transform(**data_config, is_training=False) img = Image.open( urlopen( "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png" ) ) with torch.inference_mode(): output = model(transforms(img).unsqueeze(0)) top5_probabilities, top5_class_indices = torch.topk(output.softmax(dim=1) * 100, k=5) im_classes = list(IMAGENET2012_CLASSES.values()) class_names = [im_classes[i] for i in top5_class_indices[0]] print("Top 5 predictions:") for name, prob in zip(class_names, top5_probabilities[0]): print(f" {name}: {prob:.2f}%")