--- license: mit base_model: - timm/eva02_large_patch14_448.mim_m38m_ft_in22k_in1k pipeline_tag: image-classification --- ![PyTorch to ONNX-TensorRT](https://dicksonneoh.com/images/portfolio/supercharge_your_pytorch_image_models/post_image.png) This repository contains code to optimize PyTorch image models using ONNX Runtime and TensorRT, achieving up to 8x faster inference speeds. Read the full blog post [here](https://dicksonneoh.com/portfolio/supercharge_your_pytorch_image_models/). ## Installation Create and activate a conda environment: ```bash conda create -n supercharge_timm_tensorrt python=3.11 conda activate supercharge_timm_tensorrt ``` Install required packages: ```bash pip install timm pip install onnx pip install onnxruntime-gpu==1.19.2 pip install cupy-cuda12x pip install tensorrt==10.1.0 tensorrt-cu12==10.1.0 tensorrt-cu12-bindings==10.1.0 tensorrt-cu12-libs==10.1.0 ``` Install CUDA dependencies: ```bash conda install -c nvidia cuda=12.2.2 cuda-tools=12.2.2 cuda-toolkit=12.2.2 cuda-version=12.2 cuda-command-line-tools=12.2.2 cuda-compiler=12.2.2 cuda-runtime=12.2.2 ``` Install cuDNN: ```bash conda install cudnn==9.2.1.18 ``` Set up library paths: ```bash export LD_LIBRARY_PATH="/home/dnth/mambaforge-pypy3/envs/supercharge_timm_tensorrt/lib:$LD_LIBRARY_PATH" export LD_LIBRARY_PATH="/home/dnth/mambaforge-pypy3/envs/supercharge_timm_tensorrt/lib/python3.11/site-packages/tensorrt_libs:$LD_LIBRARY_PATH" ``` ## Running the code The following codes correspond to the steps in the blog post. ### PyTorch latency benchmark: ```bash python 01_pytorch_latency_benchmark.py ``` Read more [here](https://dicksonneoh.com/portfolio/supercharge_your_pytorch_image_models//#-baseline-latency) ### Convert model to ONNX: ```bash python 02_convert_to_onnx.py ``` Read more [here](https://dicksonneoh.com/portfolio/supercharge_your_pytorch_image_models//#-convert-to-onnx) ### ONNX Runtime CPU inference: ```bash python 03_onnx_cpu_inference.py ``` Read more [here](https://dicksonneoh.com/portfolio/supercharge_your_pytorch_image_models//#-onnx-runtime-on-cpu) ### ONNX Runtime CUDA inference: ```bash python 04_onnx_cuda_inference.py ``` Read more [here](https://dicksonneoh.com/portfolio/supercharge_your_pytorch_image_models//#-onnx-runtime-on-cuda) ### ONNX Runtime TensorRT inference: ```bash python 05_onnx_trt_inference.py ``` Read more [here](https://dicksonneoh.com/portfolio/supercharge_your_pytorch_image_models//#-onnx-runtime-on-tensorrt) ### Export preprocessing to ONNX: ```bash python 06_export_preprocessing_onnx.py ``` Read more [here](https://dicksonneoh.com/portfolio/supercharge_your_pytorch_image_models//#-bake-pre-processing-into-onnx) ### Merge preprocessing and model ONNX: ```bash python 07_onnx_compose_merge.py ``` Read more [here](https://dicksonneoh.com/portfolio/supercharge_your_pytorch_image_models//#-bake-pre-processing-into-onnx) ### Run inference on merged model: ```bash python 08_inference_merged_model.py ``` Read more [here](https://dicksonneoh.com/portfolio/supercharge_your_pytorch_image_models//#-bake-pre-processing-into-onnx) ### Run inference on video: ```bash python 09_video_inference.py sample.mp4 output.mp4 --live ``` To run on a webcam as input source ``` python 09_video_inference.py --webcam --live ```