--- language: - ja license: apache-2.0 base_model: openai/whisper-large-v3 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_16_1 metrics: - wer model-index: - name: whisper-large-v3-japanese-4k-steps results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 16.1 type: mozilla-foundation/common_voice_16_1 config: ja split: None args: 'config: ja, split: test' metrics: - name: Wer type: wer value: 1821.4909443725744 --- # whisper-large-v3-japanese-4k-steps This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the Common Voice 16.1 dataset. I followed a post by Sanchit Gandhi, https://huggingface.co/blog/fine-tune-whisper It took 24 hours using an A100 on Google Colab to complete 4000 steps using the Common Voice 16.1 dataset. Training loss dropped over epochs but validation loss increased, so textbook overfitting. Furthermore, WER increased. It achieves the following results on the evaluation set: - Loss: 0.4057 - Wer: 18.2149 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 4 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:---------:| | 0.1374 | 1.02 | 1000 | 0.3618 | 11.983182 | | 0.0508 | 2.04 | 2000 | 0.3658 | 17.554657 | | 0.0206 | 3.05 | 3000 | 0.3904 | 21.087484 | | 0.0066 | 4.07 | 4000 | 0.4057 | 18.214909 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.1.0+cu121 - Datasets 2.17.0 - Tokenizers 0.15.2