--- license: cc-by-nc-4.0 base_model: mental/mental-roberta-base tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: mental-roberta_stress_classification results: [] --- # mental-roberta_stress_classification This model is a fine-tuned version of [mental/mental-roberta-base](https://huggingface.co/mental/mental-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.7029 - Accuracy: 0.5 - F1: 0.3333 - Precision: 0.25 - Recall: 0.5 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:------:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.6983 | 1.0 | 48000 | 0.7029 | 0.5 | 0.3333 | 0.25 | 0.5 | | 0.7189 | 2.0 | 96000 | 0.7414 | 0.5 | 0.3333 | 0.25 | 0.5 | | 0.5927 | 3.0 | 144000 | 0.7370 | 0.5 | 0.3333 | 0.25 | 0.5 | | 0.6274 | 4.0 | 192000 | 0.7668 | 0.5 | 0.3333 | 0.25 | 0.5 | | 0.6622 | 5.0 | 240000 | 0.7478 | 0.5 | 0.3333 | 0.25 | 0.5 | ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2