--- license: mit base_model: roberta-base tags: - stress - classification - glassdoor metrics: - accuracy - f1 - precision - recall widget: - text: >- They also caused so much stress because some leaders valued optics over output. example_title: Stressed 1 Example - text: >- Way too much work pressure. example_title: Stressed 2 Example - text: >- Understaffed, lots of deck revisions, unpredictable, terrible technology. example_title: Stressed 3 Example - text: >- Nice environment good work life balance. example_title: Not Stressed 1 Example model-index: - name: roberta-base_topic_classification_nyt_news results: - task: name: Text Classification type: text-classification dataset: name: New_York_Times_Topics type: News metrics: - type: F1 name: F1 value: 0.97 - type: accuracy name: accuracy value: 0.97 - type: precision name: precision value: 0.97 - type: recall name: recall value: 0.97 pipeline_tag: text-classification --- # roberta-base_stress_classification This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the glassdoor dataset based on 100000 employees' reviews. It achieves the following results on the evaluation set: - Loss: 0.1800 - Accuracy: 0.9647 - F1: 0.9647 - Precision: 0.9647 - Recall: 0.9647 ## Training data Training data was classified as follow: class |Description -|- 0 |Not Stressed 1 |Stressed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.704 | 1.0 | 8000 | 0.6933 | 0.5 | 0.3333 | 0.25 | 0.5 | | 0.6926 | 2.0 | 16000 | 0.6980 | 0.5 | 0.3333 | 0.25 | 0.5 | | 0.0099 | 3.0 | 24000 | 0.1800 | 0.9647 | 0.9647 | 0.9647 | 0.9647 | | 0.2727 | 4.0 | 32000 | 0.2243 | 0.9526 | 0.9526 | 0.9527 | 0.9526 | | 0.0618 | 5.0 | 40000 | 0.2128 | 0.9536 | 0.9536 | 0.9546 | 0.9536 | ### Model performance -|precision|recall|f1|support -|-|-|-|- Not Stressed|0.96|0.97|0.97|10000 Stressed|0.97|0.96|0.97|10000 | | | | accuracy|||0.97|20000 macro avg|0.97|0.97|0.97|20000 weighted avg|0.97|0.97|0.97|20000 ### How to use roberta-base_topic_classification_nyt_news with HuggingFace ```python from transformers import AutoTokenizer, AutoModelForSequenceClassification from transformers import pipeline tokenizer = AutoTokenizer.from_pretrained("dstefa/roberta-base_topic_classification_nyt_news") model = AutoModelForSequenceClassification.from_pretrained("dstefa/roberta-base_topic_classification_nyt_news") pipe = pipeline("text-classification", model=model, tokenizer=tokenizer, device=0) text = "They also caused so much stress because some leaders valued optics over output." pipe(text) [{'label': 'Stressed', 'score': 0.9959163069725037}] ### Framework versions - Transformers 4.32.1 - Pytorch 2.1.0+cu121 - Datasets 2.12.0 - Tokenizers 0.13.2