--- license: other library_name: peft tags: - generated_from_trainer base_model: google/gemma-7b model-index: - name: gemma-python results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml # use google/gemma-7b if you have access base_model: google/gemma-7b model_type: AutoModelForCausalLM tokenizer_type: AutoTokenizer load_in_8bit: false load_in_4bit: true strict: false # huggingface repo datasets: - path: ./dataset/data1.jsonl type: input_output val_set_size: 0.1 output_dir: ./gemma-python adapter: qlora lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true sequence_len: 4096 sample_packing: false pad_to_sequence_len: true wandb_project: wandb_entity: wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 3 micro_batch_size: 2 num_epochs: 10 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_ratio: 0.1 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: deepspeed_configs/zero1.json weight_decay: 0.0 fsdp: fsdp_config: special_tokens: ```

# gemma-python This model is a fine-tuned version of [google/gemma-7b](https://huggingface.co/google/gemma-7b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 2.1143 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - gradient_accumulation_steps: 3 - total_train_batch_size: 24 - total_eval_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 2 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 19.0016 | 0.12 | 1 | 18.6992 | | 19.4686 | 0.25 | 2 | 16.2578 | | 11.468 | 0.5 | 4 | 8.2891 | | 7.5305 | 0.75 | 6 | 5.8847 | | 5.7572 | 1.0 | 8 | 4.3635 | | 4.3903 | 1.25 | 10 | 3.2849 | | 2.9497 | 1.5 | 12 | 2.8539 | | 2.8738 | 1.75 | 14 | 2.6203 | | 2.7298 | 2.0 | 16 | 2.4534 | | 2.4284 | 2.25 | 18 | 2.3077 | | 2.394 | 2.5 | 20 | 2.1876 | | 2.069 | 2.75 | 22 | 2.1294 | | 1.9355 | 3.0 | 24 | 2.1048 | | 1.9635 | 3.25 | 26 | 2.0707 | | 2.092 | 3.5 | 28 | 2.0596 | | 1.9675 | 3.75 | 30 | 2.0287 | | 1.9693 | 4.0 | 32 | 2.0220 | | 2.0198 | 4.25 | 34 | 2.0124 | | 1.9357 | 4.5 | 36 | 1.9946 | | 1.8147 | 4.75 | 38 | 1.9979 | | 1.9084 | 5.0 | 40 | 1.9751 | | 1.6678 | 5.25 | 42 | 2.0049 | | 1.7639 | 5.5 | 44 | 1.9885 | | 1.7475 | 5.75 | 46 | 1.9777 | | 1.4848 | 6.0 | 48 | 1.9939 | | 1.3065 | 6.25 | 50 | 2.0264 | | 1.4792 | 6.5 | 52 | 2.0125 | | 1.4233 | 6.75 | 54 | 2.0204 | | 1.2534 | 7.0 | 56 | 2.0318 | | 1.2409 | 7.25 | 58 | 2.0445 | | 1.4309 | 7.5 | 60 | 2.0641 | | 1.1622 | 7.75 | 62 | 2.0633 | | 1.228 | 8.0 | 64 | 2.0930 | | 1.3076 | 8.25 | 66 | 2.1077 | | 1.2323 | 8.5 | 68 | 2.1060 | | 1.1635 | 8.75 | 70 | 2.1039 | | 1.261 | 9.0 | 72 | 2.1068 | | 1.0122 | 9.25 | 74 | 2.1110 | | 1.218 | 9.5 | 76 | 2.1180 | | 1.1022 | 9.75 | 78 | 2.1226 | | 1.2072 | 10.0 | 80 | 2.1143 | ### Framework versions - PEFT 0.9.0 - Transformers 4.38.2 - Pytorch 2.2.1 - Datasets 2.18.0 - Tokenizers 0.15.0