---
license: apache-2.0
library_name: peft
tags:
- axolotl
- generated_from_trainer
base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
model-index:
- name: mixtral-fc-w-resp-new-format-4e-no-negative-new
results: []
---
[](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config
axolotl version: `0.4.0`
```yaml
base_model: mistralai/Mixtral-8x7B-Instruct-v0.1
model_type: AutoModelForCausalLM
tokenizer_type: LlamaTokenizer
trust_remote_code: true
load_in_8bit: false
load_in_4bit: true
strict: false
chat_template: inst
datasets:
- path: ./data/with_function_response/function_not_used_training.jsonl
type: sharegpt
conversation: mistral
# - path: ./data/with_function_response/no_function_training.jsonl
# type: sharegpt
# conversation: mistral
- path: ./data/with_function_response/function_used_training.jsonl
type: sharegpt
conversation: mistral
dataset_prepared_path: last_run_prepared
val_set_size: 0.01
output_dir: ../mixtral-fc-w-resp-new-format-4e-no-negative-new
model_config:
output_router_logits: true
adapter: qlora
lora_model_dir:
sequence_len: 4096
sample_packing: true
pad_to_sequence_len: true
lora_r: 32
lora_alpha: 64
lora_dropout: 0.05
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
wandb_project: function-call
wandb_name: mixtral-fc-w-resp-new-format-4e-no-negative-new
wandb_log_model: end
hub_model_id: dyang415/mixtral-fc-w-resp-new-format-4e-no-negative-new
gradient_accumulation_steps: 4
micro_batch_size: 2
num_epochs: 4
optimizer: paged_adamw_8bit
lr_scheduler: cosine
learning_rate: 0.0002
train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false
gradient_checkpointing: true
logging_steps: 1
flash_attention: true
loss_watchdog_threshold: 5.0
loss_watchdog_patience: 3
warmup_steps: 10
eval_table_size:
eval_max_new_tokens: 128
eval_steps: 0.2
save_steps: 0.1
debug:
weight_decay: 0.0
fsdp:
fsdp_config:
```
# mixtral-fc-w-resp-new-format-4e-no-negative-new
This model is a fine-tuned version of [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.0848
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
The following `bitsandbytes` quantization config was used during training:
- quant_method: QuantizationMethod.BITS_AND_BYTES
- load_in_8bit: False
- load_in_4bit: True
- llm_int8_threshold: 6.0
- llm_int8_skip_modules: None
- llm_int8_enable_fp32_cpu_offload: False
- llm_int8_has_fp16_weight: False
- bnb_4bit_quant_type: nf4
- bnb_4bit_use_double_quant: True
- bnb_4bit_compute_dtype: bfloat16
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- distributed_type: multi-GPU
- num_devices: 2
- gradient_accumulation_steps: 4
- total_train_batch_size: 16
- total_eval_batch_size: 4
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 10
- num_epochs: 4
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 2.1636 | 0.0 | 1 | 2.0806 |
| 0.0914 | 0.8 | 328 | 0.0907 |
| 0.0836 | 1.58 | 656 | 0.0874 |
| 0.073 | 2.36 | 984 | 0.0851 |
| 0.0663 | 3.15 | 1312 | 0.0856 |
| 0.071 | 3.95 | 1640 | 0.0848 |
### Framework versions
- PEFT 0.7.0
- Transformers 4.37.0
- Pytorch 2.0.1+cu117
- Datasets 2.17.1
- Tokenizers 0.15.0