--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: mistralai/Mistral-7B-Instruct-v0.2 model-index: - name: nohto-v0-10e results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.0` ```yaml base_model: mistralai/Mistral-7B-Instruct-v0.2 model_type: AutoModelForCausalLM tokenizer_type: LlamaTokenizer is_mistral_derived_model: true load_in_8bit: false load_in_4bit: false strict: false chat_template: inst datasets: - path: ./data/nohto/training.jsonl type: sharegpt dataset_prepared_path: last_run_prepared val_set_size: 0.1 output_dir: ../nohto-v0-10e adapter: lora lora_model_dir: sequence_len: 4096 sample_packing: true pad_to_sequence_len: true lora_r: 16 lora_alpha: 32 lora_dropout: 0.1 lora_target_linear: true lora_fan_in_fan_out: eval_sample_packing: false hub_model_id: dyang415/nohto-v0-10e wandb_project: nohto wandb_name: nohto-v0 wandb_log_model: end gradient_accumulation_steps: 2 micro_batch_size: 1 num_epochs: 10 optimizer: paged_adamw_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true warmup_steps: 10 eval_steps: 0.2 save_steps: 0.1 eval_max_new_tokens: 128 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: ```

# nohto-v0-10e This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.8229 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 2 - total_train_batch_size: 4 - total_eval_batch_size: 2 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.7166 | 0.18 | 1 | 3.7658 | | 0.5158 | 1.64 | 10 | 0.5278 | | 0.2492 | 3.09 | 20 | 0.5739 | | 0.0338 | 4.73 | 30 | 0.7476 | | 0.0083 | 6.36 | 40 | 0.8089 | | 0.0078 | 8.0 | 50 | 0.8229 | ### Framework versions - PEFT 0.7.0 - Transformers 4.37.0 - Pytorch 2.0.1+cu117 - Datasets 2.17.1 - Tokenizers 0.15.0