--- library_name: transformers license: cc-by-sa-4.0 base_model: nlpaueb/legal-bert-small-uncased tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: legal-bert-sentiment-small-10000 results: [] --- # legal-bert-sentiment-small-10000 This model is a fine-tuned version of [nlpaueb/legal-bert-small-uncased](https://huggingface.co/nlpaueb/legal-bert-small-uncased) on the imdb dataset with 10000 train samples and 1200 test samples.. It achieves the following results on the evaluation set: - Loss: 0.2959 - Accuracy: 0.885 - F1: 0.8846 - Precision: 0.8831 - Recall: 0.8861 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | No log | 1.0 | 313 | 0.3317 | 0.8667 | 0.8728 | 0.8306 | 0.9196 | | 0.3554 | 2.0 | 626 | 0.2959 | 0.885 | 0.8846 | 0.8831 | 0.8861 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0