--- language: en license: mit library_name: timm tags: - image-classification - timm/vit_base_patch16_224.orig_in21k_ft_in1k - cifar10 datasets: cifar10 metrics: - accuracy model-index: - name: vit_base_patch16_224_in21k_ft_cifar10 results: - task: type: image-classification dataset: name: CIFAR-10 type: cifar10 metrics: - type: accuracy value: 0.9896 --- # Model Card for Model ID This model is a small timm/vit_base_patch16_224.orig_in21k_ft_in1k trained on cifar10. - **Test Accuracy:** 0.9896 - **License:** MIT ## How to Get Started with the Model Use the code below to get started with the model. ```python import timm import torch from torch import nn model = timm.create_model("timm/vit_base_patch16_224.orig_in21k_ft_in1k", pretrained=False) model.head = nn.Linear(model.head.in_features, 10) model.load_state_dict( torch.hub.load_state_dict_from_url( "https://huggingface.co/edadaltocg/vit_base_patch16_224_in21k_ft_cifar10/resolve/main/pytorch_model.bin", map_location="cpu", file_name="vit_base_patch16_224_in21k_ft_cifar10.pth", ) ) ``` ## Training Data Training data is cifar10. ## Training Hyperparameters - **config**: `scripts/train_configs/ft_cifar10.json` - **model**: `vit_base_patch16_224_in21k_ft_cifar10` - **dataset**: `cifar10` - **batch_size**: `64` - **epochs**: `10` - **validation_frequency**: `1` - **seed**: `1` - **criterion**: `CrossEntropyLoss` - **criterion_kwargs**: `{}` - **optimizer**: `SGD` - **lr**: `0.01` - **optimizer_kwargs**: `{'momentum': 0.9, 'weight_decay': 0.0}` - **scheduler**: `CosineAnnealingLR` - **scheduler_kwargs**: `{'T_max': 10}` - **debug**: `False` ## Testing Data Testing data is cifar10. --- This model card was created by Eduardo Dadalto.