# ehdwns1516/bert-base-uncased_SWAG * This model has been trained as a [SWAG dataset](https://huggingface.co/ehdwns1516/bert-base-uncased_SWAG). * Sentence Inference Multiple Choice DEMO: [Ainize DEMO](https://main-sentence-inference-multiple-choice-ehdwns1516.endpoint.ainize.ai/) * Sentence Inference Multiple Choice API: [Ainize API](https://ainize.web.app/redirect?git_repo=https://github.com/ehdwns1516/sentence_inference_multiple_choice) ## Overview Language model: [bert-base-uncased](https://huggingface.co/bert-base-uncased) Language: English Training data: [SWAG dataset](https://huggingface.co/datasets/swag) Code: See [Ainize Workspace](https://ainize.ai/workspace/create?imageId=hnj95592adzr02xPTqss&git=https://github.com/ehdwns1516/Multiple_choice_SWAG_finetunning) ## Usage ## In Transformers ``` from transformers import AutoTokenizer, AutoModelForMultipleChoice tokenizer = AutoTokenizer.from_pretrained("ehdwns1516/bert-base-uncased_SWAG") model = AutoModelForMultipleChoice.from_pretrained("ehdwns1516/bert-base-uncased_SWAG") def run_model(candicates_count, context: str, candicates: list[str]): assert len(candicates) == candicates_count, "you need " + candicates_count + " candidates" choices_inputs = [] for c in candicates: text_a = "" # empty context text_b = context + " " + c inputs = tokenizer( text_a, text_b, add_special_tokens=True, max_length=128, padding="max_length", truncation=True, return_overflowing_tokens=True, ) choices_inputs.append(inputs) input_ids = torch.LongTensor([x["input_ids"] for x in choices_inputs]) output = model(input_ids=input_ids) return {"result": candicates[torch.argmax(output.logits).item()]} items = list() count = 4 # candicates count context = "your context" for i in range(int(count)): items.append("sentence") result = run_model(count, context, items) ```