--- language: - bn license: apache-2.0 tags: - hf-asr-leaderboard - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 metrics: - wer base_model: openai/whisper-tiny model-index: - name: Whisper tiny by ehzawad results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: Common Voice 13.0 type: mozilla-foundation/common_voice_13_0 config: bn split: test args: 'config: lt, split: test' metrics: - type: wer value: 75.40948582822959 name: Wer --- # Whisper tiny by ehzawad This model is a fine-tuned version of [openai/whisper-tiny](https://huggingface.co/openai/whisper-tiny) on the Common Voice 13.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.2422 - Wer: 75.4095 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.3593 | 0.53 | 1000 | 0.3717 | 102.7311 | | 0.2502 | 1.07 | 2000 | 0.2802 | 81.0367 | | 0.2219 | 1.6 | 3000 | 0.2535 | 80.8361 | | 0.2069 | 2.14 | 4000 | 0.2422 | 75.4095 | ### Framework versions - Transformers 4.30.0.dev0 - Pytorch 2.0.1+cu117 - Datasets 2.12.0 - Tokenizers 0.13.3