--- tags: - image-classification - climate - biology base_model: microsoft/resnet-50 widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/palace.jpg example_title: Palace license: apache-2.0 metrics: - accuracy - bertscore pipeline_tag: image-classification library_name: transformers --- # Model Trained Using AutoTrain - Problem type: Image Classification # Image Classification Model Results (AutoTrain) ## Validation Metrics | Metric | Value | |--------|-------| | Loss | 0.5462 | | Accuracy | 0.7371 | ### F1 Scores | Type | Value | |------|-------| | Macro | 0.3900 | | Micro | 0.7371 | | Weighted | 0.6628 | ### Precision | Type | Value | |------|-------| | Macro | 0.3468 | | Micro | 0.7371 | | Weighted | 0.6320 | ### Recall | Type | Value | |------|-------| | Macro | 0.4972 | | Micro | 0.7371 | | Weighted | 0.7371 | ## How to use This model is designed for image classification. Here's how you can use it: ```python from transformers import AutoImageProcessor, AutoModelForImageClassification import torch from PIL import Image model_name = "eligapris/v-mdd-2000" processor = AutoImageProcessor.from_pretrained(model_name) model = AutoModelForImageClassification.from_pretrained(model_name) image = Image.open("path_to_your_image.jpg") inputs = processor(images=image, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits predicted_class_idx = logits.argmax(-1).item() print("Predicted class:", model.config.id2label[predicted_class_idx])