--- license: other tags: - merge - mergekit - lazymergekit - autoquant - exl2 base_model: - meta-llama/Meta-Llama-3-70B-Instruct - meta-llama/Meta-Llama-3-70B-Instruct - meta-llama/Meta-Llama-3-70B-Instruct - meta-llama/Meta-Llama-3-70B-Instruct - meta-llama/Meta-Llama-3-70B-Instruct - meta-llama/Meta-Llama-3-70B-Instruct - meta-llama/Meta-Llama-3-70B-Instruct --- ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/C-Xw_m97bhXaTA1TEpHB7.jpeg) # Meta-Llama-3-120B-Instruct Meta-Llama-3-120B-Instruct is a self-merge with [meta-llama/Meta-Llama-3-70B-Instruct](https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct). It was inspired by large merges like [alpindale/goliath-120b](https://huggingface.co/alpindale/goliath-120b), [nsfwthrowitaway69/Venus-120b-v1.0](https://huggingface.co/nsfwthrowitaway69/Venus-120b-v1.0), [cognitivecomputations/MegaDolphin-120b](https://huggingface.co/cognitivecomputations/MegaDolphin-120b), and [wolfram/miquliz-120b-v2.0](https://huggingface.co/wolfram/miquliz-120b-v2.0). No eval yet, but it is approved by Eric Hartford: https://twitter.com/erhartford/status/1787050962114207886 ## 🧩 Configuration ```yaml slices: - sources: - layer_range: [0, 20] model: meta-llama/Meta-Llama-3-70B-Instruct - sources: - layer_range: [10, 30] model: meta-llama/Meta-Llama-3-70B-Instruct - sources: - layer_range: [20, 40] model: meta-llama/Meta-Llama-3-70B-Instruct - sources: - layer_range: [30, 50] model: meta-llama/Meta-Llama-3-70B-Instruct - sources: - layer_range: [40, 60] model: meta-llama/Meta-Llama-3-70B-Instruct - sources: - layer_range: [50, 70] model: meta-llama/Meta-Llama-3-70B-Instruct - sources: - layer_range: [60, 80] model: meta-llama/Meta-Llama-3-70B-Instruct merge_method: passthrough dtype: float16 ``` ## 💻 Usage ```python !pip install -qU transformers accelerate from transformers import AutoTokenizer import transformers import torch model = "mlabonne/Llama-3-120B" messages = [{"role": "user", "content": "What is a large language model?"}] tokenizer = AutoTokenizer.from_pretrained(model) prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) pipeline = transformers.pipeline( "text-generation", model=model, torch_dtype=torch.float16, device_map="auto", ) outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95) print(outputs[0]["generated_text"]) ```