--- license: apache-2.0 tags: - generated_from_trainer datasets: - wmt16 metrics: - bleu base_model: Helsinki-NLP/opus-mt-tr-en model-index: - name: opus-mt-tr-en-finetuned-en-to-tr results: - task: type: text2text-generation name: Sequence-to-sequence Language Modeling dataset: name: wmt16 type: wmt16 config: tr-en split: train args: tr-en metrics: - type: bleu value: 6.471 name: Bleu --- # opus-mt-tr-en-finetuned-en-to-tr This model is a fine-tuned version of [Helsinki-NLP/opus-mt-tr-en](https://huggingface.co/Helsinki-NLP/opus-mt-tr-en) on the wmt16 dataset. It achieves the following results on the evaluation set: - Loss: 1.9429 - Bleu: 6.471 - Gen Len: 56.1688 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Bleu | Gen Len | |:-------------:|:-----:|:-----:|:---------------:|:------:|:-------:| | 1.5266 | 1.0 | 12860 | 2.2526 | 4.5834 | 55.6563 | | 1.2588 | 2.0 | 25720 | 2.0113 | 5.9203 | 56.3506 | | 1.1878 | 3.0 | 38580 | 1.9429 | 6.471 | 56.1688 | ### Framework versions - Transformers 4.25.1 - Pytorch 1.13.1+cu116 - Datasets 2.8.0 - Tokenizers 0.13.2