--- license: apache-2.0 language: ab tags: - generated_from_trainer - hf-asr-leaderboard - robust-speech-event datasets: - common_voice model-index: - name: wav2vec2-xls-r-300m-ab-CV8 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: Common Voice 8 type: mozilla-foundation/common_voice_8_0 args: ab metrics: - name: Test WER type: wer value: 44.9 --- # wav2vec2-xls-r-300m-ab-CV8 This model is a fine-tuned version of [facebook/wav2vec2-xls-r-300m](https://huggingface.co/facebook/wav2vec2-xls-r-300m) on the common_voice dataset. It achieves the following results on the evaluation set: - Loss: 0.2105 - Wer: 0.5474 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 300 - num_epochs: 15 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:-----:|:---------------:|:------:| | 4.7729 | 0.63 | 500 | 3.0624 | 1.0021 | | 2.7348 | 1.26 | 1000 | 1.0460 | 0.9815 | | 1.2756 | 1.9 | 1500 | 0.4618 | 0.8309 | | 1.0419 | 2.53 | 2000 | 0.3725 | 0.7449 | | 0.9491 | 3.16 | 2500 | 0.3368 | 0.7345 | | 0.9006 | 3.79 | 3000 | 0.3014 | 0.6936 | | 0.8519 | 4.42 | 3500 | 0.2852 | 0.6767 | | 0.8243 | 5.06 | 4000 | 0.2701 | 0.6504 | | 0.7902 | 5.69 | 4500 | 0.2641 | 0.6221 | | 0.7767 | 6.32 | 5000 | 0.2549 | 0.6192 | | 0.7516 | 6.95 | 5500 | 0.2515 | 0.6179 | | 0.737 | 7.59 | 6000 | 0.2408 | 0.5963 | | 0.7217 | 8.22 | 6500 | 0.2429 | 0.6261 | | 0.7101 | 8.85 | 7000 | 0.2366 | 0.5687 | | 0.6922 | 9.48 | 7500 | 0.2277 | 0.5680 | | 0.6866 | 10.11 | 8000 | 0.2242 | 0.5847 | | 0.6703 | 10.75 | 8500 | 0.2222 | 0.5803 | | 0.6649 | 11.38 | 9000 | 0.2247 | 0.5765 | | 0.6513 | 12.01 | 9500 | 0.2182 | 0.5644 | | 0.6369 | 12.64 | 10000 | 0.2128 | 0.5508 | | 0.6425 | 13.27 | 10500 | 0.2132 | 0.5514 | | 0.6399 | 13.91 | 11000 | 0.2116 | 0.5495 | | 0.6208 | 14.54 | 11500 | 0.2105 | 0.5474 | ### Framework versions - Transformers 4.11.3 - Pytorch 1.10.0+cu111 - Datasets 1.18.1 - Tokenizers 0.10.3