--- language: - en thumbnail: TBD tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image datasets: - ChristophSchuhmann/improved_aesthetics_6plus --- # Mini Stable Diffusion (miniSD) MiniSD is a latent text-to-image diffusion model that has been conditionned on 256x256 images through finetuning. ## Examples WIP ## Usage ``` !pip install diffusers==0.3.0 !pip install transformers scipy ftfy ``` ``` import torch from diffusers import StableDiffusionPipeline from torch import autocast # TODO: change model_id to "lambdalabs/miniSD" pipe = StableDiffusionPipeline.from_pretrained("eolecvk/model-test", torch_dtype=torch.float16) pipe = pipe.to("cuda") prompt = "Yoda" scale = 10 n_samples = 4 # Sometimes the nsfw checker is confused, you can disable it at your own risk here disable_safety = False if disable_safety: def null_safety(images, **kwargs): return images, False pipe.safety_checker = null_safety with autocast("cuda"): images = pipe(n_samples*[prompt], guidance_scale=scale).images for idx, im in enumerate(images): im.save(f"{idx:06}.png") ```