--- tags: - summarization - ar - encoder-decoder - mbert - mbert2mbert - Abstractive Summarization - generated_from_trainer datasets: - wiki_lingua model-index: - name: mbert2mbert-finetuned-ar-wikilingua results: [] --- # mbert2mbert-finetuned-ar-wikilingua This model is a fine-tuned version of [](https://huggingface.co/) on the wiki_lingua dataset. It achieves the following results on the evaluation set: - Loss: 3.6753 - Rouge-1: 15.19 - Rouge-2: 5.45 - Rouge-l: 14.64 - Gen Len: 20.0 - Bertscore: 67.86 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 16 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 250 - num_epochs: 8 - label_smoothing_factor: 0.1 ### Training results ### Framework versions - Transformers 4.19.4 - Pytorch 1.11.0+cu113 - Datasets 2.2.2 - Tokenizers 0.12.1