--- license: apache-2.0 tags: - summarization - english - en - mt5 - Abstractive Summarization - generated_from_trainer datasets: - xlsum model-index: - name: mt5-base-finetuned-english results: [] --- # mt5-base-finetuned-english This model is a fine-tuned version of [google/mt5-base](https://huggingface.co/google/mt5-base) on the xlsum dataset. It achieves the following results on the evaluation set: - Loss: 3.3271 - Rouge-1: 31.7 - Rouge-2: 11.83 - Rouge-l: 26.43 - Gen Len: 18.88 - Bertscore: 74.3 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 32 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - label_smoothing_factor: 0.1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge-1 | Rouge-2 | Rouge-l | Gen Len | Bertscore | |:-------------:|:-----:|:-----:|:---------------:|:-------:|:-------:|:-------:|:-------:|:---------:| | 4.174 | 1.0 | 3125 | 3.5662 | 27.01 | 7.95 | 22.16 | 18.91 | 72.62 | | 3.6577 | 2.0 | 6250 | 3.4304 | 28.84 | 9.09 | 23.64 | 18.87 | 73.32 | | 3.4526 | 3.0 | 9375 | 3.3691 | 29.69 | 9.96 | 24.58 | 18.84 | 73.69 | | 3.3091 | 4.0 | 12500 | 3.3368 | 30.38 | 10.32 | 25.1 | 18.9 | 73.9 | | 3.2056 | 5.0 | 15625 | 3.3271 | 30.7 | 10.65 | 25.45 | 18.89 | 73.99 | ### Framework versions - Transformers 4.18.0 - Pytorch 1.11.0+cu113 - Datasets 2.2.0 - Tokenizers 0.12.1