--- license: apache-2.0 tags: - image-classification - generated_from_trainer datasets: - food101 metrics: - accuracy model-index: - name: vit-base-food101-demo-v5 results: - task: name: Image Classification type: image-classification dataset: name: food101 type: food101 args: default metrics: - name: Accuracy type: accuracy value: 0.8558811881188119 - task: type: image-classification name: Image Classification dataset: name: food101 type: food101 config: default split: validation metrics: - name: Accuracy type: accuracy value: 0.7952079207920792 verified: true - name: Precision Macro type: precision value: 0.8087208389002668 verified: true - name: Precision Micro type: precision value: 0.7952079207920792 verified: true - name: Precision Weighted type: precision value: 0.8087208389002665 verified: true - name: Recall Macro type: recall value: 0.7952079207920792 verified: true - name: Recall Micro type: recall value: 0.7952079207920792 verified: true - name: Recall Weighted type: recall value: 0.7952079207920792 verified: true - name: F1 Macro type: f1 value: 0.7971943899991044 verified: true - name: F1 Micro type: f1 value: 0.7952079207920791 verified: true - name: F1 Weighted type: f1 value: 0.7971943899991044 verified: true - name: loss type: loss value: 0.7573962807655334 verified: true --- # vit-base-food101-demo-v5 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the food101 dataset. It achieves the following results on the evaluation set: - Loss: 0.5434 - Accuracy: 0.8559 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:--------:| | 1.6283 | 1.0 | 4735 | 0.9875 | 0.7409 | | 0.9874 | 2.0 | 9470 | 0.7967 | 0.7894 | | 0.7102 | 3.0 | 14205 | 0.6455 | 0.8255 | | 0.4917 | 4.0 | 18940 | 0.5502 | 0.8524 | ### Framework versions - Transformers 4.19.2 - Pytorch 1.11.0+cu113 - Datasets 2.2.1 - Tokenizers 0.12.1