--- language: - en license: apache-2.0 tags: - generated_from_trainer datasets: - pszemraj/govreport-summarization-8192 metrics: - rouge pipeline_tag: summarization base_model: allenai/led-base-16384 model-index: - name: led-base-16384-finetuned-govreport results: - task: type: summarization name: Summarization dataset: name: pszemraj/govreport-summarization-8192 type: pszemraj/govreport-summarization-8192 config: split split: validation args: split metrics: - type: rouge value: 50.3574 name: ROUGE-1 - type: rouge value: 20.0448 name: ROUGE-2 - type: rouge value: 22.2156 name: ROUGE-L - type: rouge value: 22.2156 name: ROUGE-LSUM - task: type: summarization name: Summarization dataset: name: pszemraj/govreport-summarization-8192 type: pszemraj/govreport-summarization-8192 config: split split: test args: split metrics: - type: rouge value: 52.6378 name: ROUGE-1 - type: rouge value: 22.213 name: ROUGE-2 - type: rouge value: 23.5898 name: ROUGE-L - type: rouge value: 23.5898 name: ROUGE-LSUM --- # led-base-16384-finetuned-govreport This model is a fine-tuned version of [allenai/led-base-16384](https://huggingface.co/allenai/led-base-16384) on the [pszemraj/govreport-summarization-8192](https://huggingface.co/datasets/pszemraj/govreport-summarization-8192) dataset. It achieves the following results on the evaluation set: - Loss: 1.2887 The rouge metrics calculations were processed later down the line (final notebook can be found [HERE](https://www.kaggle.com/code/marcoloureno/led-base-16384-finetuned-govreport-metrics/notebook)). It achieved the following results on the validation set: - Rouge1: 50.3574 - Rouge2: 20.0448 - Rougel: 22.2156 - Rougelsum: 22.2156 It achieved the following results on the test set: - Rouge1: 52.6378 - Rouge2: 22.2130 - Rougel: 23.5898 - Rougelsum: 23.5898 ## Model description As described in [Longformer: The Long-Document Transformer](https://arxiv.org/pdf/2004.05150.pdf) by Iz Beltagy, Matthew E. Peters, Arman Cohan, [Allenai's Longformer Encoder-Decoder (LED)](https://github.com/allenai/longformer#longformer) was initialized from [*bart-base*](https://huggingface.co/facebook/bart-base) since both models share the exact same architecture. To be able to process 16K tokens, *bart-base*'s position embedding matrix was simply copied 16 times. This model is especially interesting for long-range summarization and question answering. ## Intended uses & limitations [pszemraj/govreport-summarization-8192](https://huggingface.co/datasets/pszemraj/govreport-summarization-8192) is a pre-processed version of the dataset [ccdv/govreport-summarization](https://huggingface.co/datasets/ccdv/govreport-summarization), which is a dataset for summarization of long documents adapted from this [repository](https://github.com/luyang-huang96/LongDocSum) and this [paper](https://arxiv.org/pdf/2104.02112.pdf). The Allenai's LED model was fine-tuned to this dataset, allowing the summarization of documents up to 16384 tokens. ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 8 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 1.1492 | 0.24 | 250 | 1.4233 | | 1.0077 | 0.49 | 500 | 1.3813 | | 1.0069 | 0.73 | 750 | 1.3499 | | 0.9639 | 0.98 | 1000 | 1.3216 | | 0.7996 | 1.22 | 1250 | 1.3172 | | 0.9395 | 1.46 | 1500 | 1.3003 | | 0.913 | 1.71 | 1750 | 1.2919 | | 0.8843 | 1.95 | 2000 | 1.2887 | ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3