from typing import Optional, Union, List, Tuple import torch from diffusers.utils.torch_utils import randn_tensor from diffusers.pipelines.pipeline_utils import DiffusionPipeline, ImagePipelineOutput class ScoreSdeVePipelineConditioned(DiffusionPipeline): r""" Pipeline for unconditional image generation. This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods implemented for all pipelines (downloading, saving, running on a particular device, etc.). Parameters: unet ([`UNet2DModel`]): A `UNet2DModel` to denoise the encoded image. scheduler ([`ScoreSdeVeScheduler`]): A `ScoreSdeVeScheduler` to be used in combination with `unet` to denoise the encoded image. """ def __init__(self, unet, scheduler): super().__init__() self.register_modules(unet=unet, scheduler=scheduler) @torch.no_grad() def __call__( self, batch_size: int = 1, num_inference_steps: int = 2000, class_labels: Optional[torch.Tensor] = None, generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, output_type: Optional[str] = "pil", return_dict: bool = True, **kwargs, ) -> Union[ImagePipelineOutput, Tuple]: r""" The call function to the pipeline for generation. Args: batch_size (`int`, *optional*, defaults to 1): The number of images to generate. generator (`torch.Generator`, `optional`): A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make generation deterministic. output_type (`str`, `optional`, defaults to `"pil"`): The output format of the generated image. Choose between `PIL.Image` or `np.array`. return_dict (`bool`, *optional*, defaults to `True`): Whether or not to return a [`ImagePipelineOutput`] instead of a plain tuple. Returns: [`~pipelines.ImagePipelineOutput`] or `tuple`: If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is returned where the first element is a list with the generated images. """ img_size = self.unet.config.sample_size shape = (batch_size, 1, img_size, img_size) model = self.unet sample = randn_tensor(shape, generator=generator, device=self.device) * self.scheduler.init_noise_sigma sample = sample.to(self.device) self.scheduler.set_timesteps(num_inference_steps) self.scheduler.set_sigmas(num_inference_steps) for i, t in enumerate(self.progress_bar(self.scheduler.timesteps)): sigma_t = self.scheduler.sigmas[i] * torch.ones(shape[0], device=self.device) # correction step for _ in range(self.scheduler.config.correct_steps): model_output = self.unet(sample, sigma_t, class_labels).sample sample = self.scheduler.step_correct(model_output, sample, generator=generator).prev_sample # prediction step model_output = model(sample, sigma_t, class_labels).sample output = self.scheduler.step_pred(model_output, t, sample, generator=generator) sample, sample_mean = output.prev_sample, output.prev_sample_mean sample = sample_mean.clamp(0, 1) sample = sample.cpu().permute(0, 2, 3, 1).numpy() if output_type == "pil": sample = self.numpy_to_pil(sample) if not return_dict: return (sample,) return ImagePipelineOutput(images=sample)