--- license: mit base_model: pyannote/segmentation-3.0 tags: - speaker-diarization - speaker-segmentation - generated_from_trainer datasets: - diarizers-community/callhome model-index: - name: speaker-segmentation-fine-tuned-callhome-jpn results: [] --- # speaker-segmentation-fine-tuned-callhome-jpn This model is a fine-tuned version of [pyannote/segmentation-3.0](https://huggingface.co/pyannote/segmentation-3.0) on the diarizers-community/callhome jpn dataset. It achieves the following results on the evaluation set: - Loss: 0.7545 - Der: 0.2264 - False Alarm: 0.0488 - Missed Detection: 0.1331 - Confusion: 0.0445 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.001 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - num_epochs: 5.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Der | False Alarm | Missed Detection | Confusion | |:-------------:|:-----:|:----:|:---------------:|:------:|:-----------:|:----------------:|:---------:| | 0.562 | 1.0 | 328 | 0.7605 | 0.2346 | 0.0492 | 0.1357 | 0.0497 | | 0.5564 | 2.0 | 656 | 0.7540 | 0.2294 | 0.0512 | 0.1328 | 0.0454 | | 0.5273 | 3.0 | 984 | 0.7724 | 0.2321 | 0.0438 | 0.1419 | 0.0464 | | 0.5037 | 4.0 | 1312 | 0.7599 | 0.2276 | 0.0475 | 0.1349 | 0.0452 | | 0.5041 | 5.0 | 1640 | 0.7545 | 0.2264 | 0.0488 | 0.1331 | 0.0445 | ### Framework versions - Transformers 4.41.2 - Pytorch 2.3.0+cu121 - Datasets 2.20.0 - Tokenizers 0.19.1