--- license: mit base_model: xlm-roberta-base tags: - generated_from_trainer metrics: - precision - recall model-index: - name: xlm-roberta-ner-ja-v5 results: [] --- # xlm-roberta-ner-ja-v5 This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0556 - Precision: 0.9131 - Recall: 0.9879 - F1-score: 0.9490 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1-score | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:--------:| | 0.0888 | 1.0 | 837 | 0.0424 | 0.9014 | 0.9697 | 0.9343 | | 0.0438 | 2.0 | 1674 | 0.0428 | 0.8647 | 0.9851 | 0.9210 | | 0.0293 | 3.0 | 2511 | 0.0467 | 0.8746 | 0.9713 | 0.9205 | | 0.0185 | 4.0 | 3348 | 0.0484 | 0.8707 | 0.9758 | 0.9203 | | 0.0117 | 5.0 | 4185 | 0.0556 | 0.9131 | 0.9879 | 0.9490 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.0.1+cu118 - Datasets 2.17.1 - Tokenizers 0.15.2