--- tags: - feature-extraction pipeline_tag: feature-extraction --- DRAGON+ is a BERT-base sized dense retriever initialized from [RetroMAE](https://huggingface.co/Shitao/RetroMAE) and further trained on the data augmented from MS MARCO corpus, following the approach described in [How to Train Your DRAGON: Diverse Augmentation Towards Generalizable Dense Retrieval](https://arxiv.org/abs/2302.07452).

The associated GitHub repository is available here https://github.com/facebookresearch/dpr-scale/tree/main/dragon. We use asymmetric dual encoder, with two distinctly parameterized encoders. The following models are also available: Model | Initialization | MARCO Dev | BEIR | Query Encoder Path | Context Encoder Path |---|---|---|---|---|--- DRAGON+ | Shitao/RetroMAE| 39.0 | 47.4 | [facebook/dragon-plus-query-encoder](https://huggingface.co/facebook/dragon-plus-query-encoder) | [facebook/dragon-plus-context-encoder](https://huggingface.co/facebook/dragon-plus-context-encoder) DRAGON-RoBERTa | RoBERTa-base | 39.4 | 47.2 | [facebook/dragon-roberta-query-encoder](https://huggingface.co/facebook/dragon-roberta-query-encoder) | [facebook/dragon-roberta-context-encoder](https://huggingface.co/facebook/dragon-roberta-context-encoder) ## Usage (HuggingFace Transformers) Using the model directly available in HuggingFace transformers . ```python import torch from transformers import AutoTokenizer, AutoModel tokenizer = AutoTokenizer.from_pretrained('facebook/dragon-plus-query-encoder') query_encoder = AutoModel.from_pretrained('facebook/dragon-plus-query-encoder') context_encoder = AutoModel.from_pretrained('facebook/dragon-plus-context-encoder') # We use msmarco query and passages as an example query = "Where was Marie Curie born?" contexts = [ "Maria Sklodowska, later known as Marie Curie, was born on November 7, 1867.", "Born in Paris on 15 May 1859, Pierre Curie was the son of Eugène Curie, a doctor of French Catholic origin from Alsace." ] # Apply tokenizer query_input = tokenizer(query, return_tensors='pt') ctx_input = tokenizer(contexts, padding=True, truncation=True, return_tensors='pt') # Compute embeddings: take the last-layer hidden state of the [CLS] token query_emb = query_encoder(**query_input).last_hidden_state[:, 0, :] ctx_emb = context_encoder(**ctx_input).last_hidden_state[:, 0, :] # Compute similarity scores using dot product score1 = query_emb @ ctx_emb[0] # 396.5625 score2 = query_emb @ ctx_emb[1] # 393.8340 ```