--- language: - en tags: - pytorch - causal-lm - olmo - autoround - intel-autoround - gptq - woq - intel - pytorch - allenai license: apache-2.0 model_name: OLMo 2 7B base_model: - allenai/OLMo-2-1124-7B inference: false model_creator: allenai datasets: - allenai/RLVR-GSM pipeline_tag: text-generation prompt_template: '{prompt} ' quantized_by: fbaldassarri --- ## Model Information Quantized version of [allenai/OLMo-2-1124-7B](https://huggingface.co/allenai/OLMo-2-1124-7B) using torch.float32 for quantization tuning. - 4 bits (INT4) - group size = 128 - Symmetrical Quantization - Method WoQ (AutoRound format) Fast and low memory, 2-3X speedup (slight accuracy drop at W4G128) Quantization framework: [Intel AutoRound](https://github.com/intel/auto-round) v0.4.2 Note: this INT4 version of OLMo-2-1124-7B has been quantized to run inference through CPU. ## Replication Recipe ### Step 1 Install Requirements I suggest to install requirements into a dedicated python-virtualenv or a conda enviroment. ``` wget https://github.com/intel/auto-round/archive/refs/tags/v0.4.2.tar.gz tar -xvzf v0.4.2.tar.gz cd auto-round-0.4.2 pip install -r requirements-cpu.txt --upgrade ``` ### Step 2 Build Intel AutoRound wheel from sources ``` pip install -vvv --no-build-isolation -e .[cpu] ``` ### Step 3 Script for Quantization ``` from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "allenai/OLMo-2-1124-7B" model = AutoModelForCausalLM.from_pretrained(model_name) tokenizer = AutoTokenizer.from_pretrained(model_name) from auto_round import AutoRound bits, group_size, sym, device, amp = 4, 128, True, 'cpu', False autoround = AutoRound(model, tokenizer, nsamples=128, iters=200, seqlen=512, batch_size=4, bits=bits, group_size=group_size, sym=sym, device=device, amp=amp) autoround.quantize() output_dir = "./AutoRound/allenai_OLMo-2-1124-7B-autoround-int4-gs128-sym" autoround.save_quantized(output_dir, format='auto_round', inplace=True) ``` ## License [Apache 2.0 License](https://choosealicense.com/licenses/apache-2.0/) ## Disclaimer This quantized model comes with no warranty. It has been developed only for research purposes.