--- language: - en license: cc-by-nc-sa-4.0 library_name: transformers tags: - UNA - juanako - mixtral - MoE model-index: - name: UNAversal-8x7B-v1beta results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 69.8 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNAversal-8x7B-v1beta name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 86.9 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNAversal-8x7B-v1beta name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 70.39 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNAversal-8x7B-v1beta name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 71.97 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNAversal-8x7B-v1beta name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 82.0 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNAversal-8x7B-v1beta name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 61.64 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNAversal-8x7B-v1beta name: Open LLM Leaderboard --- # UNAversal - Uniform Neural Alignment (MoE) This is just a beta, a first release so people can start working on franksteins and so. It does achieve high GSM/Math and TQA, so ideally you can merge it with other mixtrals and see what coming out of it Based on [mistralai/Mixtral-8x7B-Instruct-v0.1](https://huggingface.co/mistralai/Mixtral-8x7B-Instruct-v0.1) ## UNA Details For this model we came out with the most obvious, placing UNA on the router_logit. It does work, but we saw a much better performance on SFT by doing so. So this model DOES have UNA-SFT phase, its highly experimental and it was merely using LLaMA-Factory datasets by example alpaca. As the others: - Can be finetuned further, try 2e-5 or **1e-4 (since its MOE)** - Can be merged, here you will have to improvise and please report findings on a discussion thread. **REMINDER**: please.. cite, it does help on the research and the lab itself, seriously. ## NEED YOUR HELP!! I need a multi-turn trainloop for the Mixtral, that can squeeze the juice out of 8xH100's properly. Please feel free to reach @fblgit either discord or twitter. thanks! # Evals Here there are some, but we also submitted it to the HF eval queue.... ## GSM8k 5-Shot ``` |Tasks|Version| Filter |n-shot| Metric |Value | |Stderr| |-----|-------|----------|-----:|-----------|-----:|---|-----:| |gsm8k|Yaml |get-answer| 5|exact_match|0.6603|± | 0.013| ``` ## ARC 25-Shot ``` | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr| |-------------|-------|------|-----:|--------|-----:|---|-----:| |arc_challenge|Yaml |none | 25|acc |0.6621|± |0.0138| | | |none | 25|acc_norm|0.6962|± |0.0134| ``` ## TruthfulQA 0-Shot (MC2) ``` | Tasks |Version|Filter|n-shot|Metric|Value | |Stderr| |--------------|-------|------|-----:|------|-----:|---|-----:| |truthfulqa_mc2|Yaml |none | 0|acc |0.7122|± |0.0141| ``` ## 0-Shots Evals ``` | Tasks |Version|Filter|n-shot| Metric |Value | |Stderr| |--------------|-------|------|-----:|----------|-----:|---|-----:| |arc_challenge |Yaml |none | 0|acc |0.6101|± |0.0143| | | |none | 0|acc_norm |0.6425|± |0.0140| |arc_easy |Yaml |none | 0|acc |0.8615|± |0.0071| | | |none | 0|acc_norm |0.8375|± |0.0076| |boolq |Yaml |none | 0|acc |0.8624|± |0.0060| |lambada_openai|Yaml |none | 0|perplexity|2.8318|± |0.0507| | | |none | 0|acc |0.7650|± |0.0059| |mathqa |Yaml |none | 0|acc |0.4472|± |0.0091| | | |none | 0|acc_norm |0.4436|± |0.0091| |piqa |Yaml |none | 0|acc |0.8292|± |0.0088| | | |none | 0|acc_norm |0.8422|± |0.0085| |pubmedqa |Yaml |none | 0|acc |0.7920|± |0.0182| |sciq |Yaml |none | 0|acc |0.9630|± |0.0060| | | |none | 0|acc_norm |0.9370|± |0.0077| ``` ## BBH at 0-Shot ``` vllm (pretrained=fblgit/UNAversal-8x7B-v1beta,tensor_parallel_size=2,data_parallel_size=4,gpu_memory_utilization=0.8,dtype=float16), gen_kwargs: (None), limit: None, num_fewshot: 0, batch_size: auto | Tasks |Version| Filter |n-shot| Metric |Value | |Stderr| |----------------------------------------------------------|-------|----------|-----:|-----------|-----:|---|-----:| |bbh |N/A |get-answer| 0|exact_match|0.6752|± |0.1772| | - bbh_cot_fewshot_boolean_expressions |Yaml |get-answer| 0|exact_match|0.8840|± |0.0203| | - bbh_cot_fewshot_causal_judgement |Yaml |get-answer| 0|exact_match|0.6417|± |0.0352| | - bbh_cot_fewshot_date_understanding |Yaml |get-answer| 0|exact_match|0.7600|± |0.0271| | - bbh_cot_fewshot_disambiguation_qa |Yaml |get-answer| 0|exact_match|0.7160|± |0.0286| | - bbh_cot_fewshot_dyck_languages |Yaml |get-answer| 0|exact_match|0.1800|± |0.0243| | - bbh_cot_fewshot_formal_fallacies |Yaml |get-answer| 0|exact_match|0.6520|± |0.0302| | - bbh_cot_fewshot_geometric_shapes |Yaml |get-answer| 0|exact_match|0.3880|± |0.0309| | - bbh_cot_fewshot_hyperbaton |Yaml |get-answer| 0|exact_match|0.9600|± |0.0124| | - bbh_cot_fewshot_logical_deduction_five_objects |Yaml |get-answer| 0|exact_match|0.5360|± |0.0316| | - bbh_cot_fewshot_logical_deduction_seven_objects |Yaml |get-answer| 0|exact_match|0.5040|± |0.0317| | - bbh_cot_fewshot_logical_deduction_three_objects |Yaml |get-answer| 0|exact_match|0.8600|± |0.0220| | - bbh_cot_fewshot_movie_recommendation |Yaml |get-answer| 0|exact_match|0.7840|± |0.0261| | - bbh_cot_fewshot_multistep_arithmetic_two |Yaml |get-answer| 0|exact_match|0.6600|± |0.0300| | - bbh_cot_fewshot_navigate |Yaml |get-answer| 0|exact_match|0.8160|± |0.0246| | - bbh_cot_fewshot_object_counting |Yaml |get-answer| 0|exact_match|0.8360|± |0.0235| | - bbh_cot_fewshot_penguins_in_a_table |Yaml |get-answer| 0|exact_match|0.7329|± |0.0367| | - bbh_cot_fewshot_reasoning_about_colored_objects |Yaml |get-answer| 0|exact_match|0.8120|± |0.0248| | - bbh_cot_fewshot_ruin_names |Yaml |get-answer| 0|exact_match|0.4440|± |0.0315| | - bbh_cot_fewshot_salient_translation_error_detection |Yaml |get-answer| 0|exact_match|0.5200|± |0.0317| | - bbh_cot_fewshot_snarks |Yaml |get-answer| 0|exact_match|0.7135|± |0.0340| | - bbh_cot_fewshot_sports_understanding |Yaml |get-answer| 0|exact_match|0.9400|± |0.0151| | - bbh_cot_fewshot_temporal_sequences |Yaml |get-answer| 0|exact_match|0.7560|± |0.0272| | - bbh_cot_fewshot_tracking_shuffled_objects_five_objects |Yaml |get-answer| 0|exact_match|0.5680|± |0.0314| | - bbh_cot_fewshot_tracking_shuffled_objects_seven_objects|Yaml |get-answer| 0|exact_match|0.6280|± |0.0306| | - bbh_cot_fewshot_tracking_shuffled_objects_three_objects|Yaml |get-answer| 0|exact_match|0.6280|± |0.0306| | - bbh_cot_fewshot_web_of_lies |Yaml |get-answer| 0|exact_match|0.9560|± |0.0130| | - bbh_cot_fewshot_word_sorting |Yaml |get-answer| 0|exact_match|0.3800|± |0.0308| |Groups|Version| Filter |n-shot| Metric |Value | |Stderr| |------|-------|----------|-----:|-----------|-----:|---|-----:| |bbh |N/A |get-answer| 0|exact_match|0.6752|± |0.1772| ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fblgit__UNAversal-8x7B-v1beta) | Metric |Value| |---------------------------------|----:| |Avg. |73.78| |AI2 Reasoning Challenge (25-Shot)|69.80| |HellaSwag (10-Shot) |86.90| |MMLU (5-Shot) |70.39| |TruthfulQA (0-shot) |71.97| |Winogrande (5-shot) |82.00| |GSM8k (5-shot) |61.64|