--- license: apache-2.0 language: - en base_model: - answerdotai/ModernBERT-base - answerdotai/ModernBERT-large base_model_relation: quantized tags: - fill-mask - masked-lm - long-context - modernbert --- # ModernBERT-CoreML This repo contains [ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) and [ModernBERT-large](https://huggingface.co/answerdotai/ModernBERT-large) converted to CoreML. ### Example Usage ```swift import CoreML import Tokenizers let text = "The capital of Ireland is [MASK]." print("Loading…") let model = try await ModernBERT_base.load() let tokenizer = try await AutoTokenizer.from(pretrained: "answerdotai/ModernBERT-base") print("Tokenizing…") let tokens = tokenizer(text) let inputIDs = MLShapedArray(scalars: tokens.map(Int32.init), shape: [1, tokens.count]) let input = ModernBERT_baseInput(input_ids: inputIDs) print("Predicting…") let output = try await model.prediction(input: input) let logits = output.logitsShapedArray print("Decoding…") let maskPosition = tokens.firstIndex(of: tokenizer.convertTokenToId("[MASK]")!)! let predictedTokenID = await MLTensor(logits[0, maskPosition]).argmax().shapedArray(of: Int32.self).scalar! let predictedTokenText = tokenizer.decode(tokens: [Int(predictedTokenID)]) print("Result:") print(text.replacingOccurrences(of: "[MASK]", with: predictedTokenText.trimmingCharacters(in: .whitespaces))) // The capital of Ireland is Dublin. ``` ### Conversion ``` uv run https://hf.co/finnvoorhees/ModernBERT-CoreML/raw/main/convert.py ``` ``` usage: convert.py [-h] [--model MODEL] [--quantize] Convert ModernBERT to CoreML options: -h, --help show this help message and exit --model MODEL Model name --quantize Linear quantize model ```