diff --git "a/Llama-3.2-3B-Instruct-4bit.mlmodelc/model.mil" "b/Llama-3.2-3B-Instruct-4bit.mlmodelc/model.mil" new file mode 100644--- /dev/null +++ "b/Llama-3.2-3B-Instruct-4bit.mlmodelc/model.mil" @@ -0,0 +1,5826 @@ +program(1.3) +[buildInfo = dict({{"coremlc-component-MIL", "3402.3.2"}, {"coremlc-version", "3402.4.1"}})] +{ + func main(tensor causal_mask, tensor input_ids, state> key_cache, state> value_cache) [FlexibleShapeInformation = tuple>>, tuple, ?>>>>((("DefaultShapes", {{"causal_mask", [1, 1, 1, 1]}, {"input_ids", [1, 1]}}), ("RangeDims", {{"causal_mask", [[1, 1], [1, 1], [1, 2048], [1, 2048]]}, {"input_ids", [[1, 1], [1, 2048]]}})))] { + tensor var_7_shape_cast_fp16 = shape(x = causal_mask)[name = string("op_7_shape_cast_fp16")]; + int32 gather_0_axis_0 = const()[name = string("gather_0_axis_0"), val = int32(0)]; + int32 gather_0_batch_dims_0 = const()[name = string("gather_0_batch_dims_0"), val = int32(0)]; + bool gather_0_validate_indices_0 = const()[name = string("gather_0_validate_indices_0"), val = bool(false)]; + string var_7_shape_cast_fp16_to_int16_dtype_0 = const()[name = string("op_7_shape_cast_fp16_to_int16_dtype_0"), val = string("int16")]; + uint16 select_0_to_uint16 = const()[name = string("select_0_to_uint16"), val = uint16(3)]; + tensor var_7_shape_cast_fp16_to_int16 = cast(dtype = var_7_shape_cast_fp16_to_int16_dtype_0, x = var_7_shape_cast_fp16)[name = string("cast_232")]; + int16 gather_0_cast_uint16 = gather(axis = gather_0_axis_0, batch_dims = gather_0_batch_dims_0, indices = select_0_to_uint16, validate_indices = gather_0_validate_indices_0, x = var_7_shape_cast_fp16_to_int16)[name = string("gather_0_cast_uint16")]; + string gather_0_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_0_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor var_10_shape = shape(x = input_ids)[name = string("op_10_shape")]; + int32 gather_1_axis_0 = const()[name = string("gather_1_axis_0"), val = int32(0)]; + int32 gather_1_batch_dims_0 = const()[name = string("gather_1_batch_dims_0"), val = int32(0)]; + bool gather_1_validate_indices_0 = const()[name = string("gather_1_validate_indices_0"), val = bool(false)]; + string var_10_shape_to_uint16_dtype_0 = const()[name = string("op_10_shape_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_1_to_uint16 = const()[name = string("select_1_to_uint16"), val = uint16(1)]; + tensor var_10_shape_to_uint16 = cast(dtype = var_10_shape_to_uint16_dtype_0, x = var_10_shape)[name = string("cast_231")]; + uint16 gather_1_cast_uint16 = gather(axis = gather_1_axis_0, batch_dims = gather_1_batch_dims_0, indices = select_1_to_uint16, validate_indices = gather_1_validate_indices_0, x = var_10_shape_to_uint16)[name = string("gather_1_cast_uint16")]; + string gather_1_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_1_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_0_cast_uint16_to_int32 = cast(dtype = gather_0_cast_uint16_to_int32_dtype_0, x = gather_0_cast_uint16)[name = string("cast_229")]; + int32 gather_1_cast_uint16_to_int32 = cast(dtype = gather_1_cast_uint16_to_int32_dtype_0, x = gather_1_cast_uint16)[name = string("cast_230")]; + int32 past_seen_tokens = sub(x = gather_0_cast_uint16_to_int32, y = gather_1_cast_uint16_to_int32)[name = string("past_seen_tokens")]; + int32 var_72 = const()[name = string("op_72"), val = int32(-1)]; + int32 var_81 = const()[name = string("op_81"), val = int32(3)]; + int32 inputs_embeds_axis_0 = const()[name = string("inputs_embeds_axis_0"), val = int32(0)]; + int32 inputs_embeds_batch_dims_0 = const()[name = string("inputs_embeds_batch_dims_0"), val = int32(0)]; + bool inputs_embeds_validate_indices_0 = const()[name = string("inputs_embeds_validate_indices_0"), val = bool(false)]; + tensor model_model_embed_tokens_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(64))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(197001344))))[name = string("model_model_embed_tokens_weight_to_fp16_quantized")]; + tensor inputs_embeds_cast_fp16 = gather(axis = inputs_embeds_axis_0, batch_dims = inputs_embeds_batch_dims_0, indices = input_ids, validate_indices = inputs_embeds_validate_indices_0, x = model_model_embed_tokens_weight_to_fp16_quantized)[name = string("inputs_embeds_cast_fp16")]; + tensor var_173_shape_cast_fp16 = shape(x = inputs_embeds_cast_fp16)[name = string("op_173_shape_cast_fp16")]; + int32 gather_2_axis_0 = const()[name = string("gather_2_axis_0"), val = int32(0)]; + int32 gather_2_batch_dims_0 = const()[name = string("gather_2_batch_dims_0"), val = int32(0)]; + bool gather_2_validate_indices_0 = const()[name = string("gather_2_validate_indices_0"), val = bool(false)]; + string var_173_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_173_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_2_to_uint16 = const()[name = string("select_2_to_uint16"), val = uint16(1)]; + tensor var_173_shape_cast_fp16_to_uint16 = cast(dtype = var_173_shape_cast_fp16_to_uint16_dtype_0, x = var_173_shape_cast_fp16)[name = string("cast_228")]; + uint16 gather_2_cast_uint16 = gather(axis = gather_2_axis_0, batch_dims = gather_2_batch_dims_0, indices = select_2_to_uint16, validate_indices = gather_2_validate_indices_0, x = var_173_shape_cast_fp16_to_uint16)[name = string("gather_2_cast_uint16")]; + string gather_2_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_2_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_2_cast_uint16_to_int32 = cast(dtype = gather_2_cast_uint16_to_int32_dtype_0, x = gather_2_cast_uint16)[name = string("cast_227")]; + int32 var_175 = add(x = past_seen_tokens, y = gather_2_cast_uint16_to_int32)[name = string("op_175")]; + int32 const_0 = const()[name = string("const_0"), val = int32(1)]; + tensor cache_position = range_1d(end = var_175, start = past_seen_tokens, step = const_0)[name = string("cache_position")]; + tensor position_ids_axes_0 = const()[name = string("position_ids_axes_0"), val = tensor([0])]; + tensor position_ids = expand_dims(axes = position_ids_axes_0, x = cache_position)[name = string("position_ids")]; + tensor var_188_axes_0 = const()[name = string("op_188_axes_0"), val = tensor([1])]; + tensor var_188 = expand_dims(axes = var_188_axes_0, x = position_ids)[name = string("op_188")]; + bool var_193_transpose_x_0 = const()[name = string("op_193_transpose_x_0"), val = bool(false)]; + bool var_193_transpose_y_0 = const()[name = string("op_193_transpose_y_0"), val = bool(false)]; + tensor const_2_to_fp16 = const()[name = string("const_2_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(221626560)))]; + string cast_2_to_fp16_dtype_0 = const()[name = string("cast_2_to_fp16_dtype_0"), val = string("fp16")]; + tensor var_188_to_fp16 = cast(dtype = cast_2_to_fp16_dtype_0, x = var_188)[name = string("cast_226")]; + tensor var_193_cast_fp16 = matmul(transpose_x = var_193_transpose_x_0, transpose_y = var_193_transpose_y_0, x = const_2_to_fp16, y = var_188_to_fp16)[name = string("op_193_cast_fp16")]; + tensor freqs_perm_0 = const()[name = string("freqs_perm_0"), val = tensor([0, 2, 1])]; + bool emb_interleave_0 = const()[name = string("emb_interleave_0"), val = bool(false)]; + tensor freqs_cast_fp16 = transpose(perm = freqs_perm_0, x = var_193_cast_fp16)[name = string("transpose_112")]; + tensor emb_cast_fp16 = concat(axis = var_72, interleave = emb_interleave_0, values = (freqs_cast_fp16, freqs_cast_fp16))[name = string("emb_cast_fp16")]; + tensor cos_1_cast_fp16 = cos(x = emb_cast_fp16)[name = string("cos_1_cast_fp16")]; + tensor sin_1_cast_fp16 = sin(x = emb_cast_fp16)[name = string("sin_1_cast_fp16")]; + fp16 var_78_promoted_to_fp16 = const()[name = string("op_78_promoted_to_fp16"), val = fp16(0x1p+1)]; + tensor var_214_cast_fp16 = pow(x = inputs_embeds_cast_fp16, y = var_78_promoted_to_fp16)[name = string("op_214_cast_fp16")]; + tensor variance_1_axes_0 = const()[name = string("variance_1_axes_0"), val = tensor([-1])]; + bool variance_1_keep_dims_0 = const()[name = string("variance_1_keep_dims_0"), val = bool(true)]; + tensor variance_1_cast_fp16 = reduce_mean(axes = variance_1_axes_0, keep_dims = variance_1_keep_dims_0, x = var_214_cast_fp16)[name = string("variance_1_cast_fp16")]; + fp16 var_217_to_fp16 = const()[name = string("op_217_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_218_cast_fp16 = add(x = variance_1_cast_fp16, y = var_217_to_fp16)[name = string("op_218_cast_fp16")]; + fp32 var_219_epsilon_0 = const()[name = string("op_219_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_219_cast_fp16 = rsqrt(epsilon = var_219_epsilon_0, x = var_218_cast_fp16)[name = string("op_219_cast_fp16")]; + tensor hidden_states_3_cast_fp16 = mul(x = inputs_embeds_cast_fp16, y = var_219_cast_fp16)[name = string("hidden_states_3_cast_fp16")]; + tensor model_model_layers_0_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_0_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(221626752)))]; + tensor hidden_states_7_cast_fp16 = mul(x = model_model_layers_0_input_layernorm_weight_to_fp16, y = hidden_states_3_cast_fp16)[name = string("hidden_states_7_cast_fp16")]; + tensor var_230_shape_cast_fp16 = shape(x = hidden_states_7_cast_fp16)[name = string("op_230_shape_cast_fp16")]; + int32 gather_4 = const()[name = string("gather_4"), val = int32(1)]; + int32 gather_5_axis_0 = const()[name = string("gather_5_axis_0"), val = int32(0)]; + int32 gather_5_batch_dims_0 = const()[name = string("gather_5_batch_dims_0"), val = int32(0)]; + bool gather_5_validate_indices_0 = const()[name = string("gather_5_validate_indices_0"), val = bool(false)]; + string var_230_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_230_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_5_to_uint16 = const()[name = string("select_5_to_uint16"), val = uint16(1)]; + tensor var_230_shape_cast_fp16_to_uint16 = cast(dtype = var_230_shape_cast_fp16_to_uint16_dtype_0, x = var_230_shape_cast_fp16)[name = string("cast_225")]; + uint16 gather_5_cast_uint16 = gather(axis = gather_5_axis_0, batch_dims = gather_5_batch_dims_0, indices = select_5_to_uint16, validate_indices = gather_5_validate_indices_0, x = var_230_shape_cast_fp16_to_uint16)[name = string("gather_5_cast_uint16")]; + string gather_5_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_5_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor model_model_layers_0_self_attn_q_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(221632960))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(226351616))))[name = string("model_model_layers_0_self_attn_q_proj_weight_to_fp16_quantized")]; + tensor linear_0_bias_0_to_fp16 = const()[name = string("linear_0_bias_0_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(226941504)))]; + tensor linear_0_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_0_self_attn_q_proj_weight_to_fp16_quantized, x = hidden_states_7_cast_fp16)[name = string("linear_0_cast_fp16")]; + tensor model_model_layers_0_self_attn_k_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(226947712))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(228520640))))[name = string("model_model_layers_0_self_attn_k_proj_weight_to_fp16_quantized")]; + tensor linear_1_bias_0_to_fp16 = const()[name = string("linear_1_bias_0_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(228717312)))]; + tensor linear_1_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_0_self_attn_k_proj_weight_to_fp16_quantized, x = hidden_states_7_cast_fp16)[name = string("linear_1_cast_fp16")]; + tensor model_model_layers_0_self_attn_v_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(228719424))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(230292352))))[name = string("model_model_layers_0_self_attn_v_proj_weight_to_fp16_quantized")]; + tensor linear_2_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_0_self_attn_v_proj_weight_to_fp16_quantized, x = hidden_states_7_cast_fp16)[name = string("linear_2_cast_fp16")]; + tensor concat_0x = const()[name = string("concat_0x"), val = tensor([1, -1, 24, 128])]; + tensor var_239_cast_fp16 = reshape(shape = concat_0x, x = linear_0_cast_fp16)[name = string("op_239_cast_fp16")]; + tensor q_1_perm_0 = const()[name = string("q_1_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_1x = const()[name = string("concat_1x"), val = tensor([1, -1, 8, 128])]; + tensor var_242_cast_fp16 = reshape(shape = concat_1x, x = linear_1_cast_fp16)[name = string("op_242_cast_fp16")]; + tensor k_1_perm_0 = const()[name = string("k_1_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_2x = const()[name = string("concat_2x"), val = tensor([1, -1, 8, 128])]; + tensor var_245_cast_fp16 = reshape(shape = concat_2x, x = linear_2_cast_fp16)[name = string("op_245_cast_fp16")]; + tensor v_state_1_perm_0 = const()[name = string("v_state_1_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor cos_7_axes_0 = const()[name = string("cos_7_axes_0"), val = tensor([1])]; + tensor cos_7_cast_fp16 = expand_dims(axes = cos_7_axes_0, x = cos_1_cast_fp16)[name = string("cos_7_cast_fp16")]; + tensor sin_7_axes_0 = const()[name = string("sin_7_axes_0"), val = tensor([1])]; + tensor sin_7_cast_fp16 = expand_dims(axes = sin_7_axes_0, x = sin_1_cast_fp16)[name = string("sin_7_cast_fp16")]; + tensor q_1_cast_fp16 = transpose(perm = q_1_perm_0, x = var_239_cast_fp16)[name = string("transpose_111")]; + tensor var_249_cast_fp16 = mul(x = q_1_cast_fp16, y = cos_7_cast_fp16)[name = string("op_249_cast_fp16")]; + tensor x1_1_begin_0 = const()[name = string("x1_1_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_1_end_0 = const()[name = string("x1_1_end_0"), val = tensor([1, 24, 0, 64])]; + tensor x1_1_end_mask_0 = const()[name = string("x1_1_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_1_cast_fp16 = slice_by_index(begin = x1_1_begin_0, end = x1_1_end_0, end_mask = x1_1_end_mask_0, x = q_1_cast_fp16)[name = string("x1_1_cast_fp16")]; + tensor x2_1_begin_0 = const()[name = string("x2_1_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_1_end_0 = const()[name = string("x2_1_end_0"), val = tensor([1, 24, 0, 128])]; + tensor x2_1_end_mask_0 = const()[name = string("x2_1_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_1_cast_fp16 = slice_by_index(begin = x2_1_begin_0, end = x2_1_end_0, end_mask = x2_1_end_mask_0, x = q_1_cast_fp16)[name = string("x2_1_cast_fp16")]; + fp16 const_3_promoted_to_fp16 = const()[name = string("const_3_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_260_cast_fp16 = mul(x = x2_1_cast_fp16, y = const_3_promoted_to_fp16)[name = string("op_260_cast_fp16")]; + bool var_262_interleave_0 = const()[name = string("op_262_interleave_0"), val = bool(false)]; + tensor var_262_cast_fp16 = concat(axis = var_72, interleave = var_262_interleave_0, values = (var_260_cast_fp16, x1_1_cast_fp16))[name = string("op_262_cast_fp16")]; + tensor var_263_cast_fp16 = mul(x = var_262_cast_fp16, y = sin_7_cast_fp16)[name = string("op_263_cast_fp16")]; + tensor query_states_3_cast_fp16 = add(x = var_249_cast_fp16, y = var_263_cast_fp16)[name = string("query_states_3_cast_fp16")]; + tensor k_1_cast_fp16 = transpose(perm = k_1_perm_0, x = var_242_cast_fp16)[name = string("transpose_110")]; + tensor var_265_cast_fp16 = mul(x = k_1_cast_fp16, y = cos_7_cast_fp16)[name = string("op_265_cast_fp16")]; + tensor x1_3_begin_0 = const()[name = string("x1_3_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_3_end_0 = const()[name = string("x1_3_end_0"), val = tensor([1, 8, 0, 64])]; + tensor x1_3_end_mask_0 = const()[name = string("x1_3_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_3_cast_fp16 = slice_by_index(begin = x1_3_begin_0, end = x1_3_end_0, end_mask = x1_3_end_mask_0, x = k_1_cast_fp16)[name = string("x1_3_cast_fp16")]; + tensor x2_3_begin_0 = const()[name = string("x2_3_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_3_end_0 = const()[name = string("x2_3_end_0"), val = tensor([1, 8, 0, 128])]; + tensor x2_3_end_mask_0 = const()[name = string("x2_3_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_3_cast_fp16 = slice_by_index(begin = x2_3_begin_0, end = x2_3_end_0, end_mask = x2_3_end_mask_0, x = k_1_cast_fp16)[name = string("x2_3_cast_fp16")]; + fp16 const_4_promoted_to_fp16 = const()[name = string("const_4_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_276_cast_fp16 = mul(x = x2_3_cast_fp16, y = const_4_promoted_to_fp16)[name = string("op_276_cast_fp16")]; + bool var_278_interleave_0 = const()[name = string("op_278_interleave_0"), val = bool(false)]; + tensor var_278_cast_fp16 = concat(axis = var_72, interleave = var_278_interleave_0, values = (var_276_cast_fp16, x1_3_cast_fp16))[name = string("op_278_cast_fp16")]; + tensor var_279_cast_fp16 = mul(x = var_278_cast_fp16, y = sin_7_cast_fp16)[name = string("op_279_cast_fp16")]; + tensor k_state_1_cast_fp16 = add(x = var_265_cast_fp16, y = var_279_cast_fp16)[name = string("k_state_1_cast_fp16")]; + tensor var_281_shape = shape(x = cache_position)[name = string("op_281_shape")]; + int32 gather_10_axis_0 = const()[name = string("gather_10_axis_0"), val = int32(0)]; + int32 gather_10_batch_dims_0 = const()[name = string("gather_10_batch_dims_0"), val = int32(0)]; + bool gather_10_validate_indices_0 = const()[name = string("gather_10_validate_indices_0"), val = bool(false)]; + string var_281_shape_to_uint16_dtype_0 = const()[name = string("op_281_shape_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_10_to_uint16 = const()[name = string("select_10_to_uint16"), val = uint16(0)]; + tensor var_281_shape_to_uint16 = cast(dtype = var_281_shape_to_uint16_dtype_0, x = var_281_shape)[name = string("cast_224")]; + uint16 gather_10_cast_uint16 = gather(axis = gather_10_axis_0, batch_dims = gather_10_batch_dims_0, indices = select_10_to_uint16, validate_indices = gather_10_validate_indices_0, x = var_281_shape_to_uint16)[name = string("gather_10_cast_uint16")]; + string gather_10_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_10_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_10_cast_uint16_to_int32 = cast(dtype = gather_10_cast_uint16_to_int32_dtype_0, x = gather_10_cast_uint16)[name = string("cast_223")]; + int32 end_1 = add(x = past_seen_tokens, y = gather_10_cast_uint16_to_int32)[name = string("end_1")]; + tensor read_state_0 = read_state(input = key_cache)[name = string("read_state_0")]; + tensor expand_dims_0 = const()[name = string("expand_dims_0"), val = tensor([0])]; + tensor expand_dims_1 = const()[name = string("expand_dims_1"), val = tensor([0])]; + tensor expand_dims_2_axes_0 = const()[name = string("expand_dims_2_axes_0"), val = tensor([0])]; + tensor expand_dims_2 = expand_dims(axes = expand_dims_2_axes_0, x = past_seen_tokens)[name = string("expand_dims_2")]; + tensor expand_dims_3 = const()[name = string("expand_dims_3"), val = tensor([0])]; + tensor expand_dims_4 = const()[name = string("expand_dims_4"), val = tensor([8])]; + tensor expand_dims_5_axes_0 = const()[name = string("expand_dims_5_axes_0"), val = tensor([0])]; + tensor expand_dims_5 = expand_dims(axes = expand_dims_5_axes_0, x = end_1)[name = string("expand_dims_5")]; + tensor concat_5_values0_0 = const()[name = string("concat_5_values0_0"), val = tensor([0])]; + int32 concat_5_axis_0 = const()[name = string("concat_5_axis_0"), val = int32(0)]; + bool concat_5_interleave_0 = const()[name = string("concat_5_interleave_0"), val = bool(false)]; + tensor concat_5 = concat(axis = concat_5_axis_0, interleave = concat_5_interleave_0, values = (concat_5_values0_0, expand_dims_0, expand_dims_1, expand_dims_2, expand_dims_3))[name = string("concat_5")]; + tensor concat_6_values0_0 = const()[name = string("concat_6_values0_0"), val = tensor([0])]; + tensor concat_6_values1_0 = const()[name = string("concat_6_values1_0"), val = tensor([0])]; + tensor concat_6_values4_0 = const()[name = string("concat_6_values4_0"), val = tensor([0])]; + int32 concat_6_axis_0 = const()[name = string("concat_6_axis_0"), val = int32(0)]; + bool concat_6_interleave_0 = const()[name = string("concat_6_interleave_0"), val = bool(false)]; + tensor concat_6 = concat(axis = concat_6_axis_0, interleave = concat_6_interleave_0, values = (concat_6_values0_0, concat_6_values1_0, expand_dims_4, expand_dims_5, concat_6_values4_0))[name = string("concat_6")]; + tensor key_cache_internal_tensor_assign_1_stride_0 = const()[name = string("key_cache_internal_tensor_assign_1_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor key_cache_internal_tensor_assign_1_begin_mask_0 = const()[name = string("key_cache_internal_tensor_assign_1_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_1_end_mask_0 = const()[name = string("key_cache_internal_tensor_assign_1_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor key_cache_internal_tensor_assign_1_squeeze_mask_0 = const()[name = string("key_cache_internal_tensor_assign_1_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_1_cast_fp16 = slice_update(begin = concat_5, begin_mask = key_cache_internal_tensor_assign_1_begin_mask_0, end = concat_6, end_mask = key_cache_internal_tensor_assign_1_end_mask_0, squeeze_mask = key_cache_internal_tensor_assign_1_squeeze_mask_0, stride = key_cache_internal_tensor_assign_1_stride_0, update = k_state_1_cast_fp16, x = read_state_0)[name = string("key_cache_internal_tensor_assign_1_cast_fp16")]; + write_state(data = key_cache_internal_tensor_assign_1_cast_fp16, input = key_cache)[name = string("coreml_update_state_56_write_state")]; + tensor coreml_update_state_56 = read_state(input = key_cache)[name = string("coreml_update_state_56")]; + tensor read_state_1 = read_state(input = value_cache)[name = string("read_state_1")]; + tensor value_cache_internal_tensor_assign_1_stride_0 = const()[name = string("value_cache_internal_tensor_assign_1_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor value_cache_internal_tensor_assign_1_begin_mask_0 = const()[name = string("value_cache_internal_tensor_assign_1_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor value_cache_internal_tensor_assign_1_end_mask_0 = const()[name = string("value_cache_internal_tensor_assign_1_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor value_cache_internal_tensor_assign_1_squeeze_mask_0 = const()[name = string("value_cache_internal_tensor_assign_1_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor v_state_1_cast_fp16 = transpose(perm = v_state_1_perm_0, x = var_245_cast_fp16)[name = string("transpose_109")]; + tensor value_cache_internal_tensor_assign_1_cast_fp16 = slice_update(begin = concat_5, begin_mask = value_cache_internal_tensor_assign_1_begin_mask_0, end = concat_6, end_mask = value_cache_internal_tensor_assign_1_end_mask_0, squeeze_mask = value_cache_internal_tensor_assign_1_squeeze_mask_0, stride = value_cache_internal_tensor_assign_1_stride_0, update = v_state_1_cast_fp16, x = read_state_1)[name = string("value_cache_internal_tensor_assign_1_cast_fp16")]; + write_state(data = value_cache_internal_tensor_assign_1_cast_fp16, input = value_cache)[name = string("coreml_update_state_57_write_state")]; + tensor coreml_update_state_57 = read_state(input = value_cache)[name = string("coreml_update_state_57")]; + tensor var_302_begin_0 = const()[name = string("op_302_begin_0"), val = tensor([0, 0, 0, 0, 0])]; + tensor var_302_end_0 = const()[name = string("op_302_end_0"), val = tensor([1, 1, 8, 2048, 128])]; + tensor var_302_end_mask_0 = const()[name = string("op_302_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_302_squeeze_mask_0 = const()[name = string("op_302_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_302_cast_fp16 = slice_by_index(begin = var_302_begin_0, end = var_302_end_0, end_mask = var_302_end_mask_0, squeeze_mask = var_302_squeeze_mask_0, x = coreml_update_state_56)[name = string("op_302_cast_fp16")]; + int32 concat_11_values0_0 = const()[name = string("concat_11_values0_0"), val = int32(1)]; + int32 concat_11_values1_0 = const()[name = string("concat_11_values1_0"), val = int32(8)]; + int32 concat_11_values3_0 = const()[name = string("concat_11_values3_0"), val = int32(128)]; + int32 concat_11_axis_0 = const()[name = string("concat_11_axis_0"), val = int32(0)]; + bool concat_11_interleave_0 = const()[name = string("concat_11_interleave_0"), val = bool(false)]; + tensor concat_11 = concat(axis = concat_11_axis_0, interleave = concat_11_interleave_0, values = (concat_11_values0_0, concat_11_values1_0, end_1, concat_11_values3_0))[name = string("concat_11")]; + tensor var_305_begin_0 = const()[name = string("op_305_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_305_end_mask_0 = const()[name = string("op_305_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_305_cast_fp16 = slice_by_index(begin = var_305_begin_0, end = concat_11, end_mask = var_305_end_mask_0, x = var_302_cast_fp16)[name = string("op_305_cast_fp16")]; + tensor var_307_begin_0 = const()[name = string("op_307_begin_0"), val = tensor([0, 0, 0, 0, 0])]; + tensor var_307_end_0 = const()[name = string("op_307_end_0"), val = tensor([1, 1, 8, 2048, 128])]; + tensor var_307_end_mask_0 = const()[name = string("op_307_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_307_squeeze_mask_0 = const()[name = string("op_307_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_307_cast_fp16 = slice_by_index(begin = var_307_begin_0, end = var_307_end_0, end_mask = var_307_end_mask_0, squeeze_mask = var_307_squeeze_mask_0, x = coreml_update_state_57)[name = string("op_307_cast_fp16")]; + tensor var_310_begin_0 = const()[name = string("op_310_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_310_end_mask_0 = const()[name = string("op_310_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_310_cast_fp16 = slice_by_index(begin = var_310_begin_0, end = concat_11, end_mask = var_310_end_mask_0, x = var_307_cast_fp16)[name = string("op_310_cast_fp16")]; + tensor var_312_shape_cast_fp16 = shape(x = var_305_cast_fp16)[name = string("op_312_shape_cast_fp16")]; + int32 gather_13 = const()[name = string("gather_13"), val = int32(1)]; + int32 gather_14 = const()[name = string("gather_14"), val = int32(8)]; + int32 gather_15_axis_0 = const()[name = string("gather_15_axis_0"), val = int32(0)]; + int32 gather_15_batch_dims_0 = const()[name = string("gather_15_batch_dims_0"), val = int32(0)]; + bool gather_15_validate_indices_0 = const()[name = string("gather_15_validate_indices_0"), val = bool(false)]; + string var_312_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_312_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_15_to_uint16 = const()[name = string("select_15_to_uint16"), val = uint16(2)]; + tensor var_312_shape_cast_fp16_to_uint16 = cast(dtype = var_312_shape_cast_fp16_to_uint16_dtype_0, x = var_312_shape_cast_fp16)[name = string("cast_222")]; + uint16 gather_15_cast_uint16 = gather(axis = gather_15_axis_0, batch_dims = gather_15_batch_dims_0, indices = select_15_to_uint16, validate_indices = gather_15_validate_indices_0, x = var_312_shape_cast_fp16_to_uint16)[name = string("gather_15_cast_uint16")]; + string gather_15_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_15_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_16 = const()[name = string("gather_16"), val = int32(128)]; + tensor var_319_axes_0 = const()[name = string("op_319_axes_0"), val = tensor([2])]; + tensor var_319_cast_fp16 = expand_dims(axes = var_319_axes_0, x = var_305_cast_fp16)[name = string("op_319_cast_fp16")]; + tensor shape_17_cast_fp16 = shape(x = var_319_cast_fp16)[name = string("shape_17_cast_fp16")]; + int32 concat_13_axis_0 = const()[name = string("concat_13_axis_0"), val = int32(0)]; + bool concat_13_interleave_0 = const()[name = string("concat_13_interleave_0"), val = bool(false)]; + int32 gather_15_cast_uint16_to_int32 = cast(dtype = gather_15_cast_uint16_to_int32_dtype_0, x = gather_15_cast_uint16)[name = string("cast_221")]; + tensor concat_13 = concat(axis = concat_13_axis_0, interleave = concat_13_interleave_0, values = (gather_13, gather_14, var_81, gather_15_cast_uint16_to_int32, gather_16))[name = string("concat_13")]; + tensor real_div_0 = real_div(x = concat_13, y = shape_17_cast_fp16)[name = string("real_div_0")]; + tensor hidden_states_11_cast_fp16 = tile(reps = real_div_0, x = var_319_cast_fp16)[name = string("hidden_states_11_cast_fp16")]; + tensor concat_14x = const()[name = string("concat_14x"), val = tensor([1, 24, -1, 128])]; + tensor key_states_3_cast_fp16 = reshape(shape = concat_14x, x = hidden_states_11_cast_fp16)[name = string("key_states_3_cast_fp16")]; + tensor var_329_shape_cast_fp16 = shape(x = var_310_cast_fp16)[name = string("op_329_shape_cast_fp16")]; + int32 gather_17 = const()[name = string("gather_17"), val = int32(1)]; + int32 gather_18 = const()[name = string("gather_18"), val = int32(8)]; + int32 gather_19_axis_0 = const()[name = string("gather_19_axis_0"), val = int32(0)]; + int32 gather_19_batch_dims_0 = const()[name = string("gather_19_batch_dims_0"), val = int32(0)]; + bool gather_19_validate_indices_0 = const()[name = string("gather_19_validate_indices_0"), val = bool(false)]; + string var_329_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_329_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_19_to_uint16 = const()[name = string("select_19_to_uint16"), val = uint16(2)]; + tensor var_329_shape_cast_fp16_to_uint16 = cast(dtype = var_329_shape_cast_fp16_to_uint16_dtype_0, x = var_329_shape_cast_fp16)[name = string("cast_220")]; + uint16 gather_19_cast_uint16 = gather(axis = gather_19_axis_0, batch_dims = gather_19_batch_dims_0, indices = select_19_to_uint16, validate_indices = gather_19_validate_indices_0, x = var_329_shape_cast_fp16_to_uint16)[name = string("gather_19_cast_uint16")]; + string gather_19_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_19_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_20 = const()[name = string("gather_20"), val = int32(128)]; + tensor var_336_axes_0 = const()[name = string("op_336_axes_0"), val = tensor([2])]; + tensor var_336_cast_fp16 = expand_dims(axes = var_336_axes_0, x = var_310_cast_fp16)[name = string("op_336_cast_fp16")]; + tensor shape_22_cast_fp16 = shape(x = var_336_cast_fp16)[name = string("shape_22_cast_fp16")]; + int32 concat_15_axis_0 = const()[name = string("concat_15_axis_0"), val = int32(0)]; + bool concat_15_interleave_0 = const()[name = string("concat_15_interleave_0"), val = bool(false)]; + int32 gather_19_cast_uint16_to_int32 = cast(dtype = gather_19_cast_uint16_to_int32_dtype_0, x = gather_19_cast_uint16)[name = string("cast_219")]; + tensor concat_15 = concat(axis = concat_15_axis_0, interleave = concat_15_interleave_0, values = (gather_17, gather_18, var_81, gather_19_cast_uint16_to_int32, gather_20))[name = string("concat_15")]; + tensor real_div_1 = real_div(x = concat_15, y = shape_22_cast_fp16)[name = string("real_div_1")]; + tensor hidden_states_15_cast_fp16 = tile(reps = real_div_1, x = var_336_cast_fp16)[name = string("hidden_states_15_cast_fp16")]; + tensor concat_16x = const()[name = string("concat_16x"), val = tensor([1, 24, -1, 128])]; + tensor value_states_3_cast_fp16 = reshape(shape = concat_16x, x = hidden_states_15_cast_fp16)[name = string("value_states_3_cast_fp16")]; + tensor var_346_shape_cast_fp16 = shape(x = key_states_3_cast_fp16)[name = string("op_346_shape_cast_fp16")]; + int32 gather_21_axis_0 = const()[name = string("gather_21_axis_0"), val = int32(0)]; + int32 gather_21_batch_dims_0 = const()[name = string("gather_21_batch_dims_0"), val = int32(0)]; + bool gather_21_validate_indices_0 = const()[name = string("gather_21_validate_indices_0"), val = bool(false)]; + string var_346_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_346_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_21_to_uint16 = const()[name = string("select_21_to_uint16"), val = uint16(2)]; + tensor var_346_shape_cast_fp16_to_uint16 = cast(dtype = var_346_shape_cast_fp16_to_uint16_dtype_0, x = var_346_shape_cast_fp16)[name = string("cast_218")]; + uint16 gather_21_cast_uint16 = gather(axis = gather_21_axis_0, batch_dims = gather_21_batch_dims_0, indices = select_21_to_uint16, validate_indices = gather_21_validate_indices_0, x = var_346_shape_cast_fp16_to_uint16)[name = string("gather_21_cast_uint16")]; + string gather_21_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_21_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 concat_17_values0_0 = const()[name = string("concat_17_values0_0"), val = int32(1)]; + int32 concat_17_values1_0 = const()[name = string("concat_17_values1_0"), val = int32(1)]; + int32 concat_17_values2_0 = const()[name = string("concat_17_values2_0"), val = int32(0)]; + int32 concat_17_axis_0 = const()[name = string("concat_17_axis_0"), val = int32(0)]; + bool concat_17_interleave_0 = const()[name = string("concat_17_interleave_0"), val = bool(false)]; + int32 gather_21_cast_uint16_to_int32 = cast(dtype = gather_21_cast_uint16_to_int32_dtype_0, x = gather_21_cast_uint16)[name = string("cast_217")]; + tensor concat_17 = concat(axis = concat_17_axis_0, interleave = concat_17_interleave_0, values = (concat_17_values0_0, concat_17_values1_0, concat_17_values2_0, gather_21_cast_uint16_to_int32))[name = string("concat_17")]; + tensor causal_mask_3_begin_0 = const()[name = string("causal_mask_3_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor causal_mask_3_end_mask_0 = const()[name = string("causal_mask_3_end_mask_0"), val = tensor([true, true, true, false])]; + tensor causal_mask_3_cast_fp16 = slice_by_index(begin = causal_mask_3_begin_0, end = concat_17, end_mask = causal_mask_3_end_mask_0, x = causal_mask)[name = string("causal_mask_3_cast_fp16")]; + tensor attn_output_1_cast_fp16 = scaled_dot_product_attention(attn_mask = causal_mask_3_cast_fp16, key = key_states_3_cast_fp16, query = query_states_3_cast_fp16, value = value_states_3_cast_fp16)[name = string("attn_output_1_cast_fp16")]; + tensor var_352_perm_0 = const()[name = string("op_352_perm_0"), val = tensor([0, 2, 1, 3])]; + int32 concat_18_axis_0 = const()[name = string("concat_18_axis_0"), val = int32(0)]; + bool concat_18_interleave_0 = const()[name = string("concat_18_interleave_0"), val = bool(false)]; + int32 gather_5_cast_uint16_to_int32 = cast(dtype = gather_5_cast_uint16_to_int32_dtype_0, x = gather_5_cast_uint16)[name = string("cast_216")]; + tensor concat_18 = concat(axis = concat_18_axis_0, interleave = concat_18_interleave_0, values = (gather_4, gather_5_cast_uint16_to_int32, var_72))[name = string("concat_18")]; + tensor var_352_cast_fp16 = transpose(perm = var_352_perm_0, x = attn_output_1_cast_fp16)[name = string("transpose_108")]; + tensor input_1_cast_fp16 = reshape(shape = concat_18, x = var_352_cast_fp16)[name = string("input_1_cast_fp16")]; + tensor model_model_layers_0_self_attn_o_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(230489024))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(235207680))))[name = string("model_model_layers_0_self_attn_o_proj_weight_to_fp16_quantized")]; + tensor linear_3_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_0_self_attn_o_proj_weight_to_fp16_quantized, x = input_1_cast_fp16)[name = string("linear_3_cast_fp16")]; + tensor hidden_states_19_cast_fp16 = add(x = inputs_embeds_cast_fp16, y = linear_3_cast_fp16)[name = string("hidden_states_19_cast_fp16")]; + fp16 var_78_promoted_1_to_fp16 = const()[name = string("op_78_promoted_1_to_fp16"), val = fp16(0x1p+1)]; + tensor var_361_cast_fp16 = pow(x = hidden_states_19_cast_fp16, y = var_78_promoted_1_to_fp16)[name = string("op_361_cast_fp16")]; + tensor variance_3_axes_0 = const()[name = string("variance_3_axes_0"), val = tensor([-1])]; + bool variance_3_keep_dims_0 = const()[name = string("variance_3_keep_dims_0"), val = bool(true)]; + tensor variance_3_cast_fp16 = reduce_mean(axes = variance_3_axes_0, keep_dims = variance_3_keep_dims_0, x = var_361_cast_fp16)[name = string("variance_3_cast_fp16")]; + fp16 var_364_to_fp16 = const()[name = string("op_364_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_365_cast_fp16 = add(x = variance_3_cast_fp16, y = var_364_to_fp16)[name = string("op_365_cast_fp16")]; + fp32 var_366_epsilon_0 = const()[name = string("op_366_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_366_cast_fp16 = rsqrt(epsilon = var_366_epsilon_0, x = var_365_cast_fp16)[name = string("op_366_cast_fp16")]; + tensor hidden_states_23_cast_fp16 = mul(x = hidden_states_19_cast_fp16, y = var_366_cast_fp16)[name = string("hidden_states_23_cast_fp16")]; + tensor model_model_layers_0_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_0_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(235797568)))]; + tensor input_3_cast_fp16 = mul(x = model_model_layers_0_post_attention_layernorm_weight_to_fp16, y = hidden_states_23_cast_fp16)[name = string("input_3_cast_fp16")]; + tensor model_model_layers_0_mlp_gate_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(235803776))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(248386752))))[name = string("model_model_layers_0_mlp_gate_proj_weight_to_fp16_quantized")]; + tensor linear_4_bias_0_to_fp16 = const()[name = string("linear_4_bias_0_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(249959680)))]; + tensor linear_4_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_0_mlp_gate_proj_weight_to_fp16_quantized, x = input_3_cast_fp16)[name = string("linear_4_cast_fp16")]; + tensor var_378_cast_fp16 = silu(x = linear_4_cast_fp16)[name = string("op_378_cast_fp16")]; + tensor model_model_layers_0_mlp_up_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(249976128))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(262559104))))[name = string("model_model_layers_0_mlp_up_proj_weight_to_fp16_quantized")]; + tensor linear_5_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_0_mlp_up_proj_weight_to_fp16_quantized, x = input_3_cast_fp16)[name = string("linear_5_cast_fp16")]; + tensor input_7_cast_fp16 = mul(x = var_378_cast_fp16, y = linear_5_cast_fp16)[name = string("input_7_cast_fp16")]; + tensor model_model_layers_0_mlp_down_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(264132032))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(276715008))))[name = string("model_model_layers_0_mlp_down_proj_weight_to_fp16_quantized")]; + tensor linear_6_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_0_mlp_down_proj_weight_to_fp16_quantized, x = input_7_cast_fp16)[name = string("linear_6_cast_fp16")]; + tensor hidden_states_29_cast_fp16 = add(x = hidden_states_19_cast_fp16, y = linear_6_cast_fp16)[name = string("hidden_states_29_cast_fp16")]; + fp16 var_78_promoted_2_to_fp16 = const()[name = string("op_78_promoted_2_to_fp16"), val = fp16(0x1p+1)]; + tensor var_391_cast_fp16 = pow(x = hidden_states_29_cast_fp16, y = var_78_promoted_2_to_fp16)[name = string("op_391_cast_fp16")]; + tensor variance_5_axes_0 = const()[name = string("variance_5_axes_0"), val = tensor([-1])]; + bool variance_5_keep_dims_0 = const()[name = string("variance_5_keep_dims_0"), val = bool(true)]; + tensor variance_5_cast_fp16 = reduce_mean(axes = variance_5_axes_0, keep_dims = variance_5_keep_dims_0, x = var_391_cast_fp16)[name = string("variance_5_cast_fp16")]; + fp16 var_394_to_fp16 = const()[name = string("op_394_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_395_cast_fp16 = add(x = variance_5_cast_fp16, y = var_394_to_fp16)[name = string("op_395_cast_fp16")]; + fp32 var_396_epsilon_0 = const()[name = string("op_396_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_396_cast_fp16 = rsqrt(epsilon = var_396_epsilon_0, x = var_395_cast_fp16)[name = string("op_396_cast_fp16")]; + tensor hidden_states_33_cast_fp16 = mul(x = hidden_states_29_cast_fp16, y = var_396_cast_fp16)[name = string("hidden_states_33_cast_fp16")]; + tensor model_model_layers_1_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_1_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(278287936)))]; + tensor hidden_states_37_cast_fp16 = mul(x = model_model_layers_1_input_layernorm_weight_to_fp16, y = hidden_states_33_cast_fp16)[name = string("hidden_states_37_cast_fp16")]; + tensor var_407_shape_cast_fp16 = shape(x = hidden_states_37_cast_fp16)[name = string("op_407_shape_cast_fp16")]; + int32 gather_22 = const()[name = string("gather_22"), val = int32(1)]; + int32 gather_23_axis_0 = const()[name = string("gather_23_axis_0"), val = int32(0)]; + int32 gather_23_batch_dims_0 = const()[name = string("gather_23_batch_dims_0"), val = int32(0)]; + bool gather_23_validate_indices_0 = const()[name = string("gather_23_validate_indices_0"), val = bool(false)]; + string var_407_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_407_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_23_to_uint16 = const()[name = string("select_23_to_uint16"), val = uint16(1)]; + tensor var_407_shape_cast_fp16_to_uint16 = cast(dtype = var_407_shape_cast_fp16_to_uint16_dtype_0, x = var_407_shape_cast_fp16)[name = string("cast_215")]; + uint16 gather_23_cast_uint16 = gather(axis = gather_23_axis_0, batch_dims = gather_23_batch_dims_0, indices = select_23_to_uint16, validate_indices = gather_23_validate_indices_0, x = var_407_shape_cast_fp16_to_uint16)[name = string("gather_23_cast_uint16")]; + string gather_23_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_23_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor model_model_layers_1_self_attn_q_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(278294144))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(283012800))))[name = string("model_model_layers_1_self_attn_q_proj_weight_to_fp16_quantized")]; + tensor linear_7_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_1_self_attn_q_proj_weight_to_fp16_quantized, x = hidden_states_37_cast_fp16)[name = string("linear_7_cast_fp16")]; + tensor model_model_layers_1_self_attn_k_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(283602688))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(285175616))))[name = string("model_model_layers_1_self_attn_k_proj_weight_to_fp16_quantized")]; + tensor linear_8_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_1_self_attn_k_proj_weight_to_fp16_quantized, x = hidden_states_37_cast_fp16)[name = string("linear_8_cast_fp16")]; + tensor model_model_layers_1_self_attn_v_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(285372288))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(286945216))))[name = string("model_model_layers_1_self_attn_v_proj_weight_to_fp16_quantized")]; + tensor linear_9_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_1_self_attn_v_proj_weight_to_fp16_quantized, x = hidden_states_37_cast_fp16)[name = string("linear_9_cast_fp16")]; + tensor concat_19x = const()[name = string("concat_19x"), val = tensor([1, -1, 24, 128])]; + tensor var_416_cast_fp16 = reshape(shape = concat_19x, x = linear_7_cast_fp16)[name = string("op_416_cast_fp16")]; + tensor q_3_perm_0 = const()[name = string("q_3_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_20x = const()[name = string("concat_20x"), val = tensor([1, -1, 8, 128])]; + tensor var_419_cast_fp16 = reshape(shape = concat_20x, x = linear_8_cast_fp16)[name = string("op_419_cast_fp16")]; + tensor k_3_perm_0 = const()[name = string("k_3_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_21x = const()[name = string("concat_21x"), val = tensor([1, -1, 8, 128])]; + tensor var_422_cast_fp16 = reshape(shape = concat_21x, x = linear_9_cast_fp16)[name = string("op_422_cast_fp16")]; + tensor v_state_3_perm_0 = const()[name = string("v_state_3_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor q_3_cast_fp16 = transpose(perm = q_3_perm_0, x = var_416_cast_fp16)[name = string("transpose_107")]; + tensor var_426_cast_fp16 = mul(x = q_3_cast_fp16, y = cos_7_cast_fp16)[name = string("op_426_cast_fp16")]; + tensor x1_5_begin_0 = const()[name = string("x1_5_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_5_end_0 = const()[name = string("x1_5_end_0"), val = tensor([1, 24, 0, 64])]; + tensor x1_5_end_mask_0 = const()[name = string("x1_5_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_5_cast_fp16 = slice_by_index(begin = x1_5_begin_0, end = x1_5_end_0, end_mask = x1_5_end_mask_0, x = q_3_cast_fp16)[name = string("x1_5_cast_fp16")]; + tensor x2_5_begin_0 = const()[name = string("x2_5_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_5_end_0 = const()[name = string("x2_5_end_0"), val = tensor([1, 24, 0, 128])]; + tensor x2_5_end_mask_0 = const()[name = string("x2_5_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_5_cast_fp16 = slice_by_index(begin = x2_5_begin_0, end = x2_5_end_0, end_mask = x2_5_end_mask_0, x = q_3_cast_fp16)[name = string("x2_5_cast_fp16")]; + fp16 const_5_promoted_to_fp16 = const()[name = string("const_5_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_437_cast_fp16 = mul(x = x2_5_cast_fp16, y = const_5_promoted_to_fp16)[name = string("op_437_cast_fp16")]; + bool var_439_interleave_0 = const()[name = string("op_439_interleave_0"), val = bool(false)]; + tensor var_439_cast_fp16 = concat(axis = var_72, interleave = var_439_interleave_0, values = (var_437_cast_fp16, x1_5_cast_fp16))[name = string("op_439_cast_fp16")]; + tensor var_440_cast_fp16 = mul(x = var_439_cast_fp16, y = sin_7_cast_fp16)[name = string("op_440_cast_fp16")]; + tensor query_states_7_cast_fp16 = add(x = var_426_cast_fp16, y = var_440_cast_fp16)[name = string("query_states_7_cast_fp16")]; + tensor k_3_cast_fp16 = transpose(perm = k_3_perm_0, x = var_419_cast_fp16)[name = string("transpose_106")]; + tensor var_442_cast_fp16 = mul(x = k_3_cast_fp16, y = cos_7_cast_fp16)[name = string("op_442_cast_fp16")]; + tensor x1_7_begin_0 = const()[name = string("x1_7_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_7_end_0 = const()[name = string("x1_7_end_0"), val = tensor([1, 8, 0, 64])]; + tensor x1_7_end_mask_0 = const()[name = string("x1_7_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_7_cast_fp16 = slice_by_index(begin = x1_7_begin_0, end = x1_7_end_0, end_mask = x1_7_end_mask_0, x = k_3_cast_fp16)[name = string("x1_7_cast_fp16")]; + tensor x2_7_begin_0 = const()[name = string("x2_7_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_7_end_0 = const()[name = string("x2_7_end_0"), val = tensor([1, 8, 0, 128])]; + tensor x2_7_end_mask_0 = const()[name = string("x2_7_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_7_cast_fp16 = slice_by_index(begin = x2_7_begin_0, end = x2_7_end_0, end_mask = x2_7_end_mask_0, x = k_3_cast_fp16)[name = string("x2_7_cast_fp16")]; + fp16 const_6_promoted_to_fp16 = const()[name = string("const_6_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_453_cast_fp16 = mul(x = x2_7_cast_fp16, y = const_6_promoted_to_fp16)[name = string("op_453_cast_fp16")]; + bool var_455_interleave_0 = const()[name = string("op_455_interleave_0"), val = bool(false)]; + tensor var_455_cast_fp16 = concat(axis = var_72, interleave = var_455_interleave_0, values = (var_453_cast_fp16, x1_7_cast_fp16))[name = string("op_455_cast_fp16")]; + tensor var_456_cast_fp16 = mul(x = var_455_cast_fp16, y = sin_7_cast_fp16)[name = string("op_456_cast_fp16")]; + tensor k_state_3_cast_fp16 = add(x = var_442_cast_fp16, y = var_456_cast_fp16)[name = string("k_state_3_cast_fp16")]; + tensor expand_dims_12 = const()[name = string("expand_dims_12"), val = tensor([0])]; + tensor expand_dims_13 = const()[name = string("expand_dims_13"), val = tensor([0])]; + tensor expand_dims_15 = const()[name = string("expand_dims_15"), val = tensor([0])]; + tensor concat_24_values0_0 = const()[name = string("concat_24_values0_0"), val = tensor([1])]; + int32 concat_24_axis_0 = const()[name = string("concat_24_axis_0"), val = int32(0)]; + bool concat_24_interleave_0 = const()[name = string("concat_24_interleave_0"), val = bool(false)]; + tensor concat_24 = concat(axis = concat_24_axis_0, interleave = concat_24_interleave_0, values = (concat_24_values0_0, expand_dims_12, expand_dims_13, expand_dims_2, expand_dims_15))[name = string("concat_24")]; + tensor key_cache_internal_tensor_assign_2_stride_0 = const()[name = string("key_cache_internal_tensor_assign_2_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor key_cache_internal_tensor_assign_2_begin_mask_0 = const()[name = string("key_cache_internal_tensor_assign_2_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_2_end_mask_0 = const()[name = string("key_cache_internal_tensor_assign_2_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor key_cache_internal_tensor_assign_2_squeeze_mask_0 = const()[name = string("key_cache_internal_tensor_assign_2_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_2_cast_fp16 = slice_update(begin = concat_24, begin_mask = key_cache_internal_tensor_assign_2_begin_mask_0, end = concat_6, end_mask = key_cache_internal_tensor_assign_2_end_mask_0, squeeze_mask = key_cache_internal_tensor_assign_2_squeeze_mask_0, stride = key_cache_internal_tensor_assign_2_stride_0, update = k_state_3_cast_fp16, x = coreml_update_state_56)[name = string("key_cache_internal_tensor_assign_2_cast_fp16")]; + write_state(data = key_cache_internal_tensor_assign_2_cast_fp16, input = key_cache)[name = string("coreml_update_state_58_write_state")]; + tensor coreml_update_state_58 = read_state(input = key_cache)[name = string("coreml_update_state_58")]; + tensor value_cache_internal_tensor_assign_2_stride_0 = const()[name = string("value_cache_internal_tensor_assign_2_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor value_cache_internal_tensor_assign_2_begin_mask_0 = const()[name = string("value_cache_internal_tensor_assign_2_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor value_cache_internal_tensor_assign_2_end_mask_0 = const()[name = string("value_cache_internal_tensor_assign_2_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor value_cache_internal_tensor_assign_2_squeeze_mask_0 = const()[name = string("value_cache_internal_tensor_assign_2_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor v_state_3_cast_fp16 = transpose(perm = v_state_3_perm_0, x = var_422_cast_fp16)[name = string("transpose_105")]; + tensor value_cache_internal_tensor_assign_2_cast_fp16 = slice_update(begin = concat_24, begin_mask = value_cache_internal_tensor_assign_2_begin_mask_0, end = concat_6, end_mask = value_cache_internal_tensor_assign_2_end_mask_0, squeeze_mask = value_cache_internal_tensor_assign_2_squeeze_mask_0, stride = value_cache_internal_tensor_assign_2_stride_0, update = v_state_3_cast_fp16, x = coreml_update_state_57)[name = string("value_cache_internal_tensor_assign_2_cast_fp16")]; + write_state(data = value_cache_internal_tensor_assign_2_cast_fp16, input = value_cache)[name = string("coreml_update_state_59_write_state")]; + tensor coreml_update_state_59 = read_state(input = value_cache)[name = string("coreml_update_state_59")]; + tensor var_479_begin_0 = const()[name = string("op_479_begin_0"), val = tensor([1, 0, 0, 0, 0])]; + tensor var_479_end_0 = const()[name = string("op_479_end_0"), val = tensor([2, 1, 8, 2048, 128])]; + tensor var_479_end_mask_0 = const()[name = string("op_479_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_479_squeeze_mask_0 = const()[name = string("op_479_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_479_cast_fp16 = slice_by_index(begin = var_479_begin_0, end = var_479_end_0, end_mask = var_479_end_mask_0, squeeze_mask = var_479_squeeze_mask_0, x = coreml_update_state_58)[name = string("op_479_cast_fp16")]; + tensor var_482_begin_0 = const()[name = string("op_482_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_482_end_mask_0 = const()[name = string("op_482_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_482_cast_fp16 = slice_by_index(begin = var_482_begin_0, end = concat_11, end_mask = var_482_end_mask_0, x = var_479_cast_fp16)[name = string("op_482_cast_fp16")]; + tensor var_484_begin_0 = const()[name = string("op_484_begin_0"), val = tensor([1, 0, 0, 0, 0])]; + tensor var_484_end_0 = const()[name = string("op_484_end_0"), val = tensor([2, 1, 8, 2048, 128])]; + tensor var_484_end_mask_0 = const()[name = string("op_484_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_484_squeeze_mask_0 = const()[name = string("op_484_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_484_cast_fp16 = slice_by_index(begin = var_484_begin_0, end = var_484_end_0, end_mask = var_484_end_mask_0, squeeze_mask = var_484_squeeze_mask_0, x = coreml_update_state_59)[name = string("op_484_cast_fp16")]; + tensor var_487_begin_0 = const()[name = string("op_487_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_487_end_mask_0 = const()[name = string("op_487_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_487_cast_fp16 = slice_by_index(begin = var_487_begin_0, end = concat_11, end_mask = var_487_end_mask_0, x = var_484_cast_fp16)[name = string("op_487_cast_fp16")]; + tensor var_489_shape_cast_fp16 = shape(x = var_482_cast_fp16)[name = string("op_489_shape_cast_fp16")]; + int32 gather_31 = const()[name = string("gather_31"), val = int32(1)]; + int32 gather_32 = const()[name = string("gather_32"), val = int32(8)]; + int32 gather_33_axis_0 = const()[name = string("gather_33_axis_0"), val = int32(0)]; + int32 gather_33_batch_dims_0 = const()[name = string("gather_33_batch_dims_0"), val = int32(0)]; + bool gather_33_validate_indices_0 = const()[name = string("gather_33_validate_indices_0"), val = bool(false)]; + string var_489_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_489_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_33_to_uint16 = const()[name = string("select_33_to_uint16"), val = uint16(2)]; + tensor var_489_shape_cast_fp16_to_uint16 = cast(dtype = var_489_shape_cast_fp16_to_uint16_dtype_0, x = var_489_shape_cast_fp16)[name = string("cast_214")]; + uint16 gather_33_cast_uint16 = gather(axis = gather_33_axis_0, batch_dims = gather_33_batch_dims_0, indices = select_33_to_uint16, validate_indices = gather_33_validate_indices_0, x = var_489_shape_cast_fp16_to_uint16)[name = string("gather_33_cast_uint16")]; + string gather_33_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_33_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_34 = const()[name = string("gather_34"), val = int32(128)]; + tensor var_496_axes_0 = const()[name = string("op_496_axes_0"), val = tensor([2])]; + tensor var_496_cast_fp16 = expand_dims(axes = var_496_axes_0, x = var_482_cast_fp16)[name = string("op_496_cast_fp16")]; + tensor shape_37_cast_fp16 = shape(x = var_496_cast_fp16)[name = string("shape_37_cast_fp16")]; + int32 concat_32_axis_0 = const()[name = string("concat_32_axis_0"), val = int32(0)]; + bool concat_32_interleave_0 = const()[name = string("concat_32_interleave_0"), val = bool(false)]; + int32 gather_33_cast_uint16_to_int32 = cast(dtype = gather_33_cast_uint16_to_int32_dtype_0, x = gather_33_cast_uint16)[name = string("cast_213")]; + tensor concat_32 = concat(axis = concat_32_axis_0, interleave = concat_32_interleave_0, values = (gather_31, gather_32, var_81, gather_33_cast_uint16_to_int32, gather_34))[name = string("concat_32")]; + tensor real_div_2 = real_div(x = concat_32, y = shape_37_cast_fp16)[name = string("real_div_2")]; + tensor hidden_states_41_cast_fp16 = tile(reps = real_div_2, x = var_496_cast_fp16)[name = string("hidden_states_41_cast_fp16")]; + tensor concat_33x = const()[name = string("concat_33x"), val = tensor([1, 24, -1, 128])]; + tensor key_states_7_cast_fp16 = reshape(shape = concat_33x, x = hidden_states_41_cast_fp16)[name = string("key_states_7_cast_fp16")]; + tensor var_506_shape_cast_fp16 = shape(x = var_487_cast_fp16)[name = string("op_506_shape_cast_fp16")]; + int32 gather_35 = const()[name = string("gather_35"), val = int32(1)]; + int32 gather_36 = const()[name = string("gather_36"), val = int32(8)]; + int32 gather_37_axis_0 = const()[name = string("gather_37_axis_0"), val = int32(0)]; + int32 gather_37_batch_dims_0 = const()[name = string("gather_37_batch_dims_0"), val = int32(0)]; + bool gather_37_validate_indices_0 = const()[name = string("gather_37_validate_indices_0"), val = bool(false)]; + string var_506_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_506_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_37_to_uint16 = const()[name = string("select_37_to_uint16"), val = uint16(2)]; + tensor var_506_shape_cast_fp16_to_uint16 = cast(dtype = var_506_shape_cast_fp16_to_uint16_dtype_0, x = var_506_shape_cast_fp16)[name = string("cast_212")]; + uint16 gather_37_cast_uint16 = gather(axis = gather_37_axis_0, batch_dims = gather_37_batch_dims_0, indices = select_37_to_uint16, validate_indices = gather_37_validate_indices_0, x = var_506_shape_cast_fp16_to_uint16)[name = string("gather_37_cast_uint16")]; + string gather_37_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_37_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_38 = const()[name = string("gather_38"), val = int32(128)]; + tensor var_513_axes_0 = const()[name = string("op_513_axes_0"), val = tensor([2])]; + tensor var_513_cast_fp16 = expand_dims(axes = var_513_axes_0, x = var_487_cast_fp16)[name = string("op_513_cast_fp16")]; + tensor shape_42_cast_fp16 = shape(x = var_513_cast_fp16)[name = string("shape_42_cast_fp16")]; + int32 concat_34_axis_0 = const()[name = string("concat_34_axis_0"), val = int32(0)]; + bool concat_34_interleave_0 = const()[name = string("concat_34_interleave_0"), val = bool(false)]; + int32 gather_37_cast_uint16_to_int32 = cast(dtype = gather_37_cast_uint16_to_int32_dtype_0, x = gather_37_cast_uint16)[name = string("cast_211")]; + tensor concat_34 = concat(axis = concat_34_axis_0, interleave = concat_34_interleave_0, values = (gather_35, gather_36, var_81, gather_37_cast_uint16_to_int32, gather_38))[name = string("concat_34")]; + tensor real_div_3 = real_div(x = concat_34, y = shape_42_cast_fp16)[name = string("real_div_3")]; + tensor hidden_states_45_cast_fp16 = tile(reps = real_div_3, x = var_513_cast_fp16)[name = string("hidden_states_45_cast_fp16")]; + tensor concat_35x = const()[name = string("concat_35x"), val = tensor([1, 24, -1, 128])]; + tensor value_states_7_cast_fp16 = reshape(shape = concat_35x, x = hidden_states_45_cast_fp16)[name = string("value_states_7_cast_fp16")]; + tensor var_523_shape_cast_fp16 = shape(x = key_states_7_cast_fp16)[name = string("op_523_shape_cast_fp16")]; + int32 gather_39_axis_0 = const()[name = string("gather_39_axis_0"), val = int32(0)]; + int32 gather_39_batch_dims_0 = const()[name = string("gather_39_batch_dims_0"), val = int32(0)]; + bool gather_39_validate_indices_0 = const()[name = string("gather_39_validate_indices_0"), val = bool(false)]; + string var_523_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_523_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_39_to_uint16 = const()[name = string("select_39_to_uint16"), val = uint16(2)]; + tensor var_523_shape_cast_fp16_to_uint16 = cast(dtype = var_523_shape_cast_fp16_to_uint16_dtype_0, x = var_523_shape_cast_fp16)[name = string("cast_210")]; + uint16 gather_39_cast_uint16 = gather(axis = gather_39_axis_0, batch_dims = gather_39_batch_dims_0, indices = select_39_to_uint16, validate_indices = gather_39_validate_indices_0, x = var_523_shape_cast_fp16_to_uint16)[name = string("gather_39_cast_uint16")]; + string gather_39_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_39_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 concat_36_values0_0 = const()[name = string("concat_36_values0_0"), val = int32(1)]; + int32 concat_36_values1_0 = const()[name = string("concat_36_values1_0"), val = int32(1)]; + int32 concat_36_values2_0 = const()[name = string("concat_36_values2_0"), val = int32(0)]; + int32 concat_36_axis_0 = const()[name = string("concat_36_axis_0"), val = int32(0)]; + bool concat_36_interleave_0 = const()[name = string("concat_36_interleave_0"), val = bool(false)]; + int32 gather_39_cast_uint16_to_int32 = cast(dtype = gather_39_cast_uint16_to_int32_dtype_0, x = gather_39_cast_uint16)[name = string("cast_209")]; + tensor concat_36 = concat(axis = concat_36_axis_0, interleave = concat_36_interleave_0, values = (concat_36_values0_0, concat_36_values1_0, concat_36_values2_0, gather_39_cast_uint16_to_int32))[name = string("concat_36")]; + tensor causal_mask_5_begin_0 = const()[name = string("causal_mask_5_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor causal_mask_5_end_mask_0 = const()[name = string("causal_mask_5_end_mask_0"), val = tensor([true, true, true, false])]; + tensor causal_mask_5_cast_fp16 = slice_by_index(begin = causal_mask_5_begin_0, end = concat_36, end_mask = causal_mask_5_end_mask_0, x = causal_mask)[name = string("causal_mask_5_cast_fp16")]; + tensor attn_output_5_cast_fp16 = scaled_dot_product_attention(attn_mask = causal_mask_5_cast_fp16, key = key_states_7_cast_fp16, query = query_states_7_cast_fp16, value = value_states_7_cast_fp16)[name = string("attn_output_5_cast_fp16")]; + tensor var_529_perm_0 = const()[name = string("op_529_perm_0"), val = tensor([0, 2, 1, 3])]; + int32 concat_37_axis_0 = const()[name = string("concat_37_axis_0"), val = int32(0)]; + bool concat_37_interleave_0 = const()[name = string("concat_37_interleave_0"), val = bool(false)]; + int32 gather_23_cast_uint16_to_int32 = cast(dtype = gather_23_cast_uint16_to_int32_dtype_0, x = gather_23_cast_uint16)[name = string("cast_208")]; + tensor concat_37 = concat(axis = concat_37_axis_0, interleave = concat_37_interleave_0, values = (gather_22, gather_23_cast_uint16_to_int32, var_72))[name = string("concat_37")]; + tensor var_529_cast_fp16 = transpose(perm = var_529_perm_0, x = attn_output_5_cast_fp16)[name = string("transpose_104")]; + tensor input_9_cast_fp16 = reshape(shape = concat_37, x = var_529_cast_fp16)[name = string("input_9_cast_fp16")]; + tensor model_model_layers_1_self_attn_o_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(287141888))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(291860544))))[name = string("model_model_layers_1_self_attn_o_proj_weight_to_fp16_quantized")]; + tensor linear_10_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_1_self_attn_o_proj_weight_to_fp16_quantized, x = input_9_cast_fp16)[name = string("linear_10_cast_fp16")]; + tensor hidden_states_49_cast_fp16 = add(x = hidden_states_29_cast_fp16, y = linear_10_cast_fp16)[name = string("hidden_states_49_cast_fp16")]; + fp16 var_78_promoted_3_to_fp16 = const()[name = string("op_78_promoted_3_to_fp16"), val = fp16(0x1p+1)]; + tensor var_538_cast_fp16 = pow(x = hidden_states_49_cast_fp16, y = var_78_promoted_3_to_fp16)[name = string("op_538_cast_fp16")]; + tensor variance_7_axes_0 = const()[name = string("variance_7_axes_0"), val = tensor([-1])]; + bool variance_7_keep_dims_0 = const()[name = string("variance_7_keep_dims_0"), val = bool(true)]; + tensor variance_7_cast_fp16 = reduce_mean(axes = variance_7_axes_0, keep_dims = variance_7_keep_dims_0, x = var_538_cast_fp16)[name = string("variance_7_cast_fp16")]; + fp16 var_541_to_fp16 = const()[name = string("op_541_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_542_cast_fp16 = add(x = variance_7_cast_fp16, y = var_541_to_fp16)[name = string("op_542_cast_fp16")]; + fp32 var_543_epsilon_0 = const()[name = string("op_543_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_543_cast_fp16 = rsqrt(epsilon = var_543_epsilon_0, x = var_542_cast_fp16)[name = string("op_543_cast_fp16")]; + tensor hidden_states_53_cast_fp16 = mul(x = hidden_states_49_cast_fp16, y = var_543_cast_fp16)[name = string("hidden_states_53_cast_fp16")]; + tensor model_model_layers_1_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_1_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(292450432)))]; + tensor input_11_cast_fp16 = mul(x = model_model_layers_1_post_attention_layernorm_weight_to_fp16, y = hidden_states_53_cast_fp16)[name = string("input_11_cast_fp16")]; + tensor model_model_layers_1_mlp_gate_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(292456640))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(305039616))))[name = string("model_model_layers_1_mlp_gate_proj_weight_to_fp16_quantized")]; + tensor linear_11_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_1_mlp_gate_proj_weight_to_fp16_quantized, x = input_11_cast_fp16)[name = string("linear_11_cast_fp16")]; + tensor var_555_cast_fp16 = silu(x = linear_11_cast_fp16)[name = string("op_555_cast_fp16")]; + tensor model_model_layers_1_mlp_up_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(306612544))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(319195520))))[name = string("model_model_layers_1_mlp_up_proj_weight_to_fp16_quantized")]; + tensor linear_12_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_1_mlp_up_proj_weight_to_fp16_quantized, x = input_11_cast_fp16)[name = string("linear_12_cast_fp16")]; + tensor input_15_cast_fp16 = mul(x = var_555_cast_fp16, y = linear_12_cast_fp16)[name = string("input_15_cast_fp16")]; + tensor model_model_layers_1_mlp_down_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(320768448))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(333351424))))[name = string("model_model_layers_1_mlp_down_proj_weight_to_fp16_quantized")]; + tensor linear_13_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_1_mlp_down_proj_weight_to_fp16_quantized, x = input_15_cast_fp16)[name = string("linear_13_cast_fp16")]; + tensor hidden_states_59_cast_fp16 = add(x = hidden_states_49_cast_fp16, y = linear_13_cast_fp16)[name = string("hidden_states_59_cast_fp16")]; + fp16 var_78_promoted_4_to_fp16 = const()[name = string("op_78_promoted_4_to_fp16"), val = fp16(0x1p+1)]; + tensor var_568_cast_fp16 = pow(x = hidden_states_59_cast_fp16, y = var_78_promoted_4_to_fp16)[name = string("op_568_cast_fp16")]; + tensor variance_9_axes_0 = const()[name = string("variance_9_axes_0"), val = tensor([-1])]; + bool variance_9_keep_dims_0 = const()[name = string("variance_9_keep_dims_0"), val = bool(true)]; + tensor variance_9_cast_fp16 = reduce_mean(axes = variance_9_axes_0, keep_dims = variance_9_keep_dims_0, x = var_568_cast_fp16)[name = string("variance_9_cast_fp16")]; + fp16 var_571_to_fp16 = const()[name = string("op_571_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_572_cast_fp16 = add(x = variance_9_cast_fp16, y = var_571_to_fp16)[name = string("op_572_cast_fp16")]; + fp32 var_573_epsilon_0 = const()[name = string("op_573_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_573_cast_fp16 = rsqrt(epsilon = var_573_epsilon_0, x = var_572_cast_fp16)[name = string("op_573_cast_fp16")]; + tensor hidden_states_63_cast_fp16 = mul(x = hidden_states_59_cast_fp16, y = var_573_cast_fp16)[name = string("hidden_states_63_cast_fp16")]; + tensor model_model_layers_2_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_2_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(334924352)))]; + tensor hidden_states_67_cast_fp16 = mul(x = model_model_layers_2_input_layernorm_weight_to_fp16, y = hidden_states_63_cast_fp16)[name = string("hidden_states_67_cast_fp16")]; + tensor var_584_shape_cast_fp16 = shape(x = hidden_states_67_cast_fp16)[name = string("op_584_shape_cast_fp16")]; + int32 gather_40 = const()[name = string("gather_40"), val = int32(1)]; + int32 gather_41_axis_0 = const()[name = string("gather_41_axis_0"), val = int32(0)]; + int32 gather_41_batch_dims_0 = const()[name = string("gather_41_batch_dims_0"), val = int32(0)]; + bool gather_41_validate_indices_0 = const()[name = string("gather_41_validate_indices_0"), val = bool(false)]; + string var_584_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_584_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_41_to_uint16 = const()[name = string("select_41_to_uint16"), val = uint16(1)]; + tensor var_584_shape_cast_fp16_to_uint16 = cast(dtype = var_584_shape_cast_fp16_to_uint16_dtype_0, x = var_584_shape_cast_fp16)[name = string("cast_207")]; + uint16 gather_41_cast_uint16 = gather(axis = gather_41_axis_0, batch_dims = gather_41_batch_dims_0, indices = select_41_to_uint16, validate_indices = gather_41_validate_indices_0, x = var_584_shape_cast_fp16_to_uint16)[name = string("gather_41_cast_uint16")]; + string gather_41_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_41_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor model_model_layers_2_self_attn_q_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(334930560))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(339649216))))[name = string("model_model_layers_2_self_attn_q_proj_weight_to_fp16_quantized")]; + tensor linear_14_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_2_self_attn_q_proj_weight_to_fp16_quantized, x = hidden_states_67_cast_fp16)[name = string("linear_14_cast_fp16")]; + tensor model_model_layers_2_self_attn_k_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(340239104))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(341812032))))[name = string("model_model_layers_2_self_attn_k_proj_weight_to_fp16_quantized")]; + tensor linear_15_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_2_self_attn_k_proj_weight_to_fp16_quantized, x = hidden_states_67_cast_fp16)[name = string("linear_15_cast_fp16")]; + tensor model_model_layers_2_self_attn_v_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(342008704))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(343581632))))[name = string("model_model_layers_2_self_attn_v_proj_weight_to_fp16_quantized")]; + tensor linear_16_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_2_self_attn_v_proj_weight_to_fp16_quantized, x = hidden_states_67_cast_fp16)[name = string("linear_16_cast_fp16")]; + tensor concat_38x = const()[name = string("concat_38x"), val = tensor([1, -1, 24, 128])]; + tensor var_593_cast_fp16 = reshape(shape = concat_38x, x = linear_14_cast_fp16)[name = string("op_593_cast_fp16")]; + tensor q_5_perm_0 = const()[name = string("q_5_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_39x = const()[name = string("concat_39x"), val = tensor([1, -1, 8, 128])]; + tensor var_596_cast_fp16 = reshape(shape = concat_39x, x = linear_15_cast_fp16)[name = string("op_596_cast_fp16")]; + tensor k_5_perm_0 = const()[name = string("k_5_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_40x = const()[name = string("concat_40x"), val = tensor([1, -1, 8, 128])]; + tensor var_599_cast_fp16 = reshape(shape = concat_40x, x = linear_16_cast_fp16)[name = string("op_599_cast_fp16")]; + tensor v_state_5_perm_0 = const()[name = string("v_state_5_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor q_5_cast_fp16 = transpose(perm = q_5_perm_0, x = var_593_cast_fp16)[name = string("transpose_103")]; + tensor var_603_cast_fp16 = mul(x = q_5_cast_fp16, y = cos_7_cast_fp16)[name = string("op_603_cast_fp16")]; + tensor x1_9_begin_0 = const()[name = string("x1_9_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_9_end_0 = const()[name = string("x1_9_end_0"), val = tensor([1, 24, 0, 64])]; + tensor x1_9_end_mask_0 = const()[name = string("x1_9_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_9_cast_fp16 = slice_by_index(begin = x1_9_begin_0, end = x1_9_end_0, end_mask = x1_9_end_mask_0, x = q_5_cast_fp16)[name = string("x1_9_cast_fp16")]; + tensor x2_9_begin_0 = const()[name = string("x2_9_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_9_end_0 = const()[name = string("x2_9_end_0"), val = tensor([1, 24, 0, 128])]; + tensor x2_9_end_mask_0 = const()[name = string("x2_9_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_9_cast_fp16 = slice_by_index(begin = x2_9_begin_0, end = x2_9_end_0, end_mask = x2_9_end_mask_0, x = q_5_cast_fp16)[name = string("x2_9_cast_fp16")]; + fp16 const_7_promoted_to_fp16 = const()[name = string("const_7_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_614_cast_fp16 = mul(x = x2_9_cast_fp16, y = const_7_promoted_to_fp16)[name = string("op_614_cast_fp16")]; + bool var_616_interleave_0 = const()[name = string("op_616_interleave_0"), val = bool(false)]; + tensor var_616_cast_fp16 = concat(axis = var_72, interleave = var_616_interleave_0, values = (var_614_cast_fp16, x1_9_cast_fp16))[name = string("op_616_cast_fp16")]; + tensor var_617_cast_fp16 = mul(x = var_616_cast_fp16, y = sin_7_cast_fp16)[name = string("op_617_cast_fp16")]; + tensor query_states_11_cast_fp16 = add(x = var_603_cast_fp16, y = var_617_cast_fp16)[name = string("query_states_11_cast_fp16")]; + tensor k_5_cast_fp16 = transpose(perm = k_5_perm_0, x = var_596_cast_fp16)[name = string("transpose_102")]; + tensor var_619_cast_fp16 = mul(x = k_5_cast_fp16, y = cos_7_cast_fp16)[name = string("op_619_cast_fp16")]; + tensor x1_11_begin_0 = const()[name = string("x1_11_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_11_end_0 = const()[name = string("x1_11_end_0"), val = tensor([1, 8, 0, 64])]; + tensor x1_11_end_mask_0 = const()[name = string("x1_11_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_11_cast_fp16 = slice_by_index(begin = x1_11_begin_0, end = x1_11_end_0, end_mask = x1_11_end_mask_0, x = k_5_cast_fp16)[name = string("x1_11_cast_fp16")]; + tensor x2_11_begin_0 = const()[name = string("x2_11_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_11_end_0 = const()[name = string("x2_11_end_0"), val = tensor([1, 8, 0, 128])]; + tensor x2_11_end_mask_0 = const()[name = string("x2_11_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_11_cast_fp16 = slice_by_index(begin = x2_11_begin_0, end = x2_11_end_0, end_mask = x2_11_end_mask_0, x = k_5_cast_fp16)[name = string("x2_11_cast_fp16")]; + fp16 const_8_promoted_to_fp16 = const()[name = string("const_8_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_630_cast_fp16 = mul(x = x2_11_cast_fp16, y = const_8_promoted_to_fp16)[name = string("op_630_cast_fp16")]; + bool var_632_interleave_0 = const()[name = string("op_632_interleave_0"), val = bool(false)]; + tensor var_632_cast_fp16 = concat(axis = var_72, interleave = var_632_interleave_0, values = (var_630_cast_fp16, x1_11_cast_fp16))[name = string("op_632_cast_fp16")]; + tensor var_633_cast_fp16 = mul(x = var_632_cast_fp16, y = sin_7_cast_fp16)[name = string("op_633_cast_fp16")]; + tensor k_state_5_cast_fp16 = add(x = var_619_cast_fp16, y = var_633_cast_fp16)[name = string("k_state_5_cast_fp16")]; + tensor expand_dims_24 = const()[name = string("expand_dims_24"), val = tensor([0])]; + tensor expand_dims_25 = const()[name = string("expand_dims_25"), val = tensor([0])]; + tensor expand_dims_27 = const()[name = string("expand_dims_27"), val = tensor([0])]; + tensor concat_43_values0_0 = const()[name = string("concat_43_values0_0"), val = tensor([2])]; + int32 concat_43_axis_0 = const()[name = string("concat_43_axis_0"), val = int32(0)]; + bool concat_43_interleave_0 = const()[name = string("concat_43_interleave_0"), val = bool(false)]; + tensor concat_43 = concat(axis = concat_43_axis_0, interleave = concat_43_interleave_0, values = (concat_43_values0_0, expand_dims_24, expand_dims_25, expand_dims_2, expand_dims_27))[name = string("concat_43")]; + tensor key_cache_internal_tensor_assign_3_stride_0 = const()[name = string("key_cache_internal_tensor_assign_3_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor key_cache_internal_tensor_assign_3_begin_mask_0 = const()[name = string("key_cache_internal_tensor_assign_3_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_3_end_mask_0 = const()[name = string("key_cache_internal_tensor_assign_3_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor key_cache_internal_tensor_assign_3_squeeze_mask_0 = const()[name = string("key_cache_internal_tensor_assign_3_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_3_cast_fp16 = slice_update(begin = concat_43, begin_mask = key_cache_internal_tensor_assign_3_begin_mask_0, end = concat_6, end_mask = key_cache_internal_tensor_assign_3_end_mask_0, squeeze_mask = key_cache_internal_tensor_assign_3_squeeze_mask_0, stride = key_cache_internal_tensor_assign_3_stride_0, update = k_state_5_cast_fp16, x = coreml_update_state_58)[name = string("key_cache_internal_tensor_assign_3_cast_fp16")]; + write_state(data = key_cache_internal_tensor_assign_3_cast_fp16, input = key_cache)[name = string("coreml_update_state_60_write_state")]; + tensor coreml_update_state_60 = read_state(input = key_cache)[name = string("coreml_update_state_60")]; + tensor value_cache_internal_tensor_assign_3_stride_0 = const()[name = string("value_cache_internal_tensor_assign_3_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor value_cache_internal_tensor_assign_3_begin_mask_0 = const()[name = string("value_cache_internal_tensor_assign_3_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor value_cache_internal_tensor_assign_3_end_mask_0 = const()[name = string("value_cache_internal_tensor_assign_3_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor value_cache_internal_tensor_assign_3_squeeze_mask_0 = const()[name = string("value_cache_internal_tensor_assign_3_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor v_state_5_cast_fp16 = transpose(perm = v_state_5_perm_0, x = var_599_cast_fp16)[name = string("transpose_101")]; + tensor value_cache_internal_tensor_assign_3_cast_fp16 = slice_update(begin = concat_43, begin_mask = value_cache_internal_tensor_assign_3_begin_mask_0, end = concat_6, end_mask = value_cache_internal_tensor_assign_3_end_mask_0, squeeze_mask = value_cache_internal_tensor_assign_3_squeeze_mask_0, stride = value_cache_internal_tensor_assign_3_stride_0, update = v_state_5_cast_fp16, x = coreml_update_state_59)[name = string("value_cache_internal_tensor_assign_3_cast_fp16")]; + write_state(data = value_cache_internal_tensor_assign_3_cast_fp16, input = value_cache)[name = string("coreml_update_state_61_write_state")]; + tensor coreml_update_state_61 = read_state(input = value_cache)[name = string("coreml_update_state_61")]; + tensor var_656_begin_0 = const()[name = string("op_656_begin_0"), val = tensor([2, 0, 0, 0, 0])]; + tensor var_656_end_0 = const()[name = string("op_656_end_0"), val = tensor([3, 1, 8, 2048, 128])]; + tensor var_656_end_mask_0 = const()[name = string("op_656_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_656_squeeze_mask_0 = const()[name = string("op_656_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_656_cast_fp16 = slice_by_index(begin = var_656_begin_0, end = var_656_end_0, end_mask = var_656_end_mask_0, squeeze_mask = var_656_squeeze_mask_0, x = coreml_update_state_60)[name = string("op_656_cast_fp16")]; + tensor var_659_begin_0 = const()[name = string("op_659_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_659_end_mask_0 = const()[name = string("op_659_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_659_cast_fp16 = slice_by_index(begin = var_659_begin_0, end = concat_11, end_mask = var_659_end_mask_0, x = var_656_cast_fp16)[name = string("op_659_cast_fp16")]; + tensor var_661_begin_0 = const()[name = string("op_661_begin_0"), val = tensor([2, 0, 0, 0, 0])]; + tensor var_661_end_0 = const()[name = string("op_661_end_0"), val = tensor([3, 1, 8, 2048, 128])]; + tensor var_661_end_mask_0 = const()[name = string("op_661_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_661_squeeze_mask_0 = const()[name = string("op_661_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_661_cast_fp16 = slice_by_index(begin = var_661_begin_0, end = var_661_end_0, end_mask = var_661_end_mask_0, squeeze_mask = var_661_squeeze_mask_0, x = coreml_update_state_61)[name = string("op_661_cast_fp16")]; + tensor var_664_begin_0 = const()[name = string("op_664_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_664_end_mask_0 = const()[name = string("op_664_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_664_cast_fp16 = slice_by_index(begin = var_664_begin_0, end = concat_11, end_mask = var_664_end_mask_0, x = var_661_cast_fp16)[name = string("op_664_cast_fp16")]; + tensor var_666_shape_cast_fp16 = shape(x = var_659_cast_fp16)[name = string("op_666_shape_cast_fp16")]; + int32 gather_49 = const()[name = string("gather_49"), val = int32(1)]; + int32 gather_50 = const()[name = string("gather_50"), val = int32(8)]; + int32 gather_51_axis_0 = const()[name = string("gather_51_axis_0"), val = int32(0)]; + int32 gather_51_batch_dims_0 = const()[name = string("gather_51_batch_dims_0"), val = int32(0)]; + bool gather_51_validate_indices_0 = const()[name = string("gather_51_validate_indices_0"), val = bool(false)]; + string var_666_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_666_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_51_to_uint16 = const()[name = string("select_51_to_uint16"), val = uint16(2)]; + tensor var_666_shape_cast_fp16_to_uint16 = cast(dtype = var_666_shape_cast_fp16_to_uint16_dtype_0, x = var_666_shape_cast_fp16)[name = string("cast_206")]; + uint16 gather_51_cast_uint16 = gather(axis = gather_51_axis_0, batch_dims = gather_51_batch_dims_0, indices = select_51_to_uint16, validate_indices = gather_51_validate_indices_0, x = var_666_shape_cast_fp16_to_uint16)[name = string("gather_51_cast_uint16")]; + string gather_51_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_51_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_52 = const()[name = string("gather_52"), val = int32(128)]; + tensor var_673_axes_0 = const()[name = string("op_673_axes_0"), val = tensor([2])]; + tensor var_673_cast_fp16 = expand_dims(axes = var_673_axes_0, x = var_659_cast_fp16)[name = string("op_673_cast_fp16")]; + tensor shape_57_cast_fp16 = shape(x = var_673_cast_fp16)[name = string("shape_57_cast_fp16")]; + int32 concat_51_axis_0 = const()[name = string("concat_51_axis_0"), val = int32(0)]; + bool concat_51_interleave_0 = const()[name = string("concat_51_interleave_0"), val = bool(false)]; + int32 gather_51_cast_uint16_to_int32 = cast(dtype = gather_51_cast_uint16_to_int32_dtype_0, x = gather_51_cast_uint16)[name = string("cast_205")]; + tensor concat_51 = concat(axis = concat_51_axis_0, interleave = concat_51_interleave_0, values = (gather_49, gather_50, var_81, gather_51_cast_uint16_to_int32, gather_52))[name = string("concat_51")]; + tensor real_div_4 = real_div(x = concat_51, y = shape_57_cast_fp16)[name = string("real_div_4")]; + tensor hidden_states_71_cast_fp16 = tile(reps = real_div_4, x = var_673_cast_fp16)[name = string("hidden_states_71_cast_fp16")]; + tensor concat_52x = const()[name = string("concat_52x"), val = tensor([1, 24, -1, 128])]; + tensor key_states_11_cast_fp16 = reshape(shape = concat_52x, x = hidden_states_71_cast_fp16)[name = string("key_states_11_cast_fp16")]; + tensor var_683_shape_cast_fp16 = shape(x = var_664_cast_fp16)[name = string("op_683_shape_cast_fp16")]; + int32 gather_53 = const()[name = string("gather_53"), val = int32(1)]; + int32 gather_54 = const()[name = string("gather_54"), val = int32(8)]; + int32 gather_55_axis_0 = const()[name = string("gather_55_axis_0"), val = int32(0)]; + int32 gather_55_batch_dims_0 = const()[name = string("gather_55_batch_dims_0"), val = int32(0)]; + bool gather_55_validate_indices_0 = const()[name = string("gather_55_validate_indices_0"), val = bool(false)]; + string var_683_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_683_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_55_to_uint16 = const()[name = string("select_55_to_uint16"), val = uint16(2)]; + tensor var_683_shape_cast_fp16_to_uint16 = cast(dtype = var_683_shape_cast_fp16_to_uint16_dtype_0, x = var_683_shape_cast_fp16)[name = string("cast_204")]; + uint16 gather_55_cast_uint16 = gather(axis = gather_55_axis_0, batch_dims = gather_55_batch_dims_0, indices = select_55_to_uint16, validate_indices = gather_55_validate_indices_0, x = var_683_shape_cast_fp16_to_uint16)[name = string("gather_55_cast_uint16")]; + string gather_55_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_55_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_56 = const()[name = string("gather_56"), val = int32(128)]; + tensor var_690_axes_0 = const()[name = string("op_690_axes_0"), val = tensor([2])]; + tensor var_690_cast_fp16 = expand_dims(axes = var_690_axes_0, x = var_664_cast_fp16)[name = string("op_690_cast_fp16")]; + tensor shape_62_cast_fp16 = shape(x = var_690_cast_fp16)[name = string("shape_62_cast_fp16")]; + int32 concat_53_axis_0 = const()[name = string("concat_53_axis_0"), val = int32(0)]; + bool concat_53_interleave_0 = const()[name = string("concat_53_interleave_0"), val = bool(false)]; + int32 gather_55_cast_uint16_to_int32 = cast(dtype = gather_55_cast_uint16_to_int32_dtype_0, x = gather_55_cast_uint16)[name = string("cast_203")]; + tensor concat_53 = concat(axis = concat_53_axis_0, interleave = concat_53_interleave_0, values = (gather_53, gather_54, var_81, gather_55_cast_uint16_to_int32, gather_56))[name = string("concat_53")]; + tensor real_div_5 = real_div(x = concat_53, y = shape_62_cast_fp16)[name = string("real_div_5")]; + tensor hidden_states_75_cast_fp16 = tile(reps = real_div_5, x = var_690_cast_fp16)[name = string("hidden_states_75_cast_fp16")]; + tensor concat_54x = const()[name = string("concat_54x"), val = tensor([1, 24, -1, 128])]; + tensor value_states_11_cast_fp16 = reshape(shape = concat_54x, x = hidden_states_75_cast_fp16)[name = string("value_states_11_cast_fp16")]; + tensor var_700_shape_cast_fp16 = shape(x = key_states_11_cast_fp16)[name = string("op_700_shape_cast_fp16")]; + int32 gather_57_axis_0 = const()[name = string("gather_57_axis_0"), val = int32(0)]; + int32 gather_57_batch_dims_0 = const()[name = string("gather_57_batch_dims_0"), val = int32(0)]; + bool gather_57_validate_indices_0 = const()[name = string("gather_57_validate_indices_0"), val = bool(false)]; + string var_700_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_700_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_57_to_uint16 = const()[name = string("select_57_to_uint16"), val = uint16(2)]; + tensor var_700_shape_cast_fp16_to_uint16 = cast(dtype = var_700_shape_cast_fp16_to_uint16_dtype_0, x = var_700_shape_cast_fp16)[name = string("cast_202")]; + uint16 gather_57_cast_uint16 = gather(axis = gather_57_axis_0, batch_dims = gather_57_batch_dims_0, indices = select_57_to_uint16, validate_indices = gather_57_validate_indices_0, x = var_700_shape_cast_fp16_to_uint16)[name = string("gather_57_cast_uint16")]; + string gather_57_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_57_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 concat_55_values0_0 = const()[name = string("concat_55_values0_0"), val = int32(1)]; + int32 concat_55_values1_0 = const()[name = string("concat_55_values1_0"), val = int32(1)]; + int32 concat_55_values2_0 = const()[name = string("concat_55_values2_0"), val = int32(0)]; + int32 concat_55_axis_0 = const()[name = string("concat_55_axis_0"), val = int32(0)]; + bool concat_55_interleave_0 = const()[name = string("concat_55_interleave_0"), val = bool(false)]; + int32 gather_57_cast_uint16_to_int32 = cast(dtype = gather_57_cast_uint16_to_int32_dtype_0, x = gather_57_cast_uint16)[name = string("cast_201")]; + tensor concat_55 = concat(axis = concat_55_axis_0, interleave = concat_55_interleave_0, values = (concat_55_values0_0, concat_55_values1_0, concat_55_values2_0, gather_57_cast_uint16_to_int32))[name = string("concat_55")]; + tensor causal_mask_7_begin_0 = const()[name = string("causal_mask_7_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor causal_mask_7_end_mask_0 = const()[name = string("causal_mask_7_end_mask_0"), val = tensor([true, true, true, false])]; + tensor causal_mask_7_cast_fp16 = slice_by_index(begin = causal_mask_7_begin_0, end = concat_55, end_mask = causal_mask_7_end_mask_0, x = causal_mask)[name = string("causal_mask_7_cast_fp16")]; + tensor attn_output_9_cast_fp16 = scaled_dot_product_attention(attn_mask = causal_mask_7_cast_fp16, key = key_states_11_cast_fp16, query = query_states_11_cast_fp16, value = value_states_11_cast_fp16)[name = string("attn_output_9_cast_fp16")]; + tensor var_706_perm_0 = const()[name = string("op_706_perm_0"), val = tensor([0, 2, 1, 3])]; + int32 concat_56_axis_0 = const()[name = string("concat_56_axis_0"), val = int32(0)]; + bool concat_56_interleave_0 = const()[name = string("concat_56_interleave_0"), val = bool(false)]; + int32 gather_41_cast_uint16_to_int32 = cast(dtype = gather_41_cast_uint16_to_int32_dtype_0, x = gather_41_cast_uint16)[name = string("cast_200")]; + tensor concat_56 = concat(axis = concat_56_axis_0, interleave = concat_56_interleave_0, values = (gather_40, gather_41_cast_uint16_to_int32, var_72))[name = string("concat_56")]; + tensor var_706_cast_fp16 = transpose(perm = var_706_perm_0, x = attn_output_9_cast_fp16)[name = string("transpose_100")]; + tensor input_17_cast_fp16 = reshape(shape = concat_56, x = var_706_cast_fp16)[name = string("input_17_cast_fp16")]; + tensor model_model_layers_2_self_attn_o_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(343778304))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(348496960))))[name = string("model_model_layers_2_self_attn_o_proj_weight_to_fp16_quantized")]; + tensor linear_17_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_2_self_attn_o_proj_weight_to_fp16_quantized, x = input_17_cast_fp16)[name = string("linear_17_cast_fp16")]; + tensor hidden_states_79_cast_fp16 = add(x = hidden_states_59_cast_fp16, y = linear_17_cast_fp16)[name = string("hidden_states_79_cast_fp16")]; + fp16 var_78_promoted_5_to_fp16 = const()[name = string("op_78_promoted_5_to_fp16"), val = fp16(0x1p+1)]; + tensor var_715_cast_fp16 = pow(x = hidden_states_79_cast_fp16, y = var_78_promoted_5_to_fp16)[name = string("op_715_cast_fp16")]; + tensor variance_11_axes_0 = const()[name = string("variance_11_axes_0"), val = tensor([-1])]; + bool variance_11_keep_dims_0 = const()[name = string("variance_11_keep_dims_0"), val = bool(true)]; + tensor variance_11_cast_fp16 = reduce_mean(axes = variance_11_axes_0, keep_dims = variance_11_keep_dims_0, x = var_715_cast_fp16)[name = string("variance_11_cast_fp16")]; + fp16 var_718_to_fp16 = const()[name = string("op_718_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_719_cast_fp16 = add(x = variance_11_cast_fp16, y = var_718_to_fp16)[name = string("op_719_cast_fp16")]; + fp32 var_720_epsilon_0 = const()[name = string("op_720_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_720_cast_fp16 = rsqrt(epsilon = var_720_epsilon_0, x = var_719_cast_fp16)[name = string("op_720_cast_fp16")]; + tensor hidden_states_83_cast_fp16 = mul(x = hidden_states_79_cast_fp16, y = var_720_cast_fp16)[name = string("hidden_states_83_cast_fp16")]; + tensor model_model_layers_2_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_2_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(349086848)))]; + tensor input_19_cast_fp16 = mul(x = model_model_layers_2_post_attention_layernorm_weight_to_fp16, y = hidden_states_83_cast_fp16)[name = string("input_19_cast_fp16")]; + tensor model_model_layers_2_mlp_gate_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(349093056))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(361676032))))[name = string("model_model_layers_2_mlp_gate_proj_weight_to_fp16_quantized")]; + tensor linear_18_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_2_mlp_gate_proj_weight_to_fp16_quantized, x = input_19_cast_fp16)[name = string("linear_18_cast_fp16")]; + tensor var_732_cast_fp16 = silu(x = linear_18_cast_fp16)[name = string("op_732_cast_fp16")]; + tensor model_model_layers_2_mlp_up_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(363248960))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(375831936))))[name = string("model_model_layers_2_mlp_up_proj_weight_to_fp16_quantized")]; + tensor linear_19_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_2_mlp_up_proj_weight_to_fp16_quantized, x = input_19_cast_fp16)[name = string("linear_19_cast_fp16")]; + tensor input_23_cast_fp16 = mul(x = var_732_cast_fp16, y = linear_19_cast_fp16)[name = string("input_23_cast_fp16")]; + tensor model_model_layers_2_mlp_down_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(377404864))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(389987840))))[name = string("model_model_layers_2_mlp_down_proj_weight_to_fp16_quantized")]; + tensor linear_20_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_2_mlp_down_proj_weight_to_fp16_quantized, x = input_23_cast_fp16)[name = string("linear_20_cast_fp16")]; + tensor hidden_states_89_cast_fp16 = add(x = hidden_states_79_cast_fp16, y = linear_20_cast_fp16)[name = string("hidden_states_89_cast_fp16")]; + fp16 var_78_promoted_6_to_fp16 = const()[name = string("op_78_promoted_6_to_fp16"), val = fp16(0x1p+1)]; + tensor var_745_cast_fp16 = pow(x = hidden_states_89_cast_fp16, y = var_78_promoted_6_to_fp16)[name = string("op_745_cast_fp16")]; + tensor variance_13_axes_0 = const()[name = string("variance_13_axes_0"), val = tensor([-1])]; + bool variance_13_keep_dims_0 = const()[name = string("variance_13_keep_dims_0"), val = bool(true)]; + tensor variance_13_cast_fp16 = reduce_mean(axes = variance_13_axes_0, keep_dims = variance_13_keep_dims_0, x = var_745_cast_fp16)[name = string("variance_13_cast_fp16")]; + fp16 var_748_to_fp16 = const()[name = string("op_748_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_749_cast_fp16 = add(x = variance_13_cast_fp16, y = var_748_to_fp16)[name = string("op_749_cast_fp16")]; + fp32 var_750_epsilon_0 = const()[name = string("op_750_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_750_cast_fp16 = rsqrt(epsilon = var_750_epsilon_0, x = var_749_cast_fp16)[name = string("op_750_cast_fp16")]; + tensor hidden_states_93_cast_fp16 = mul(x = hidden_states_89_cast_fp16, y = var_750_cast_fp16)[name = string("hidden_states_93_cast_fp16")]; + tensor model_model_layers_3_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_3_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(391560768)))]; + tensor hidden_states_97_cast_fp16 = mul(x = model_model_layers_3_input_layernorm_weight_to_fp16, y = hidden_states_93_cast_fp16)[name = string("hidden_states_97_cast_fp16")]; + tensor var_761_shape_cast_fp16 = shape(x = hidden_states_97_cast_fp16)[name = string("op_761_shape_cast_fp16")]; + int32 gather_58 = const()[name = string("gather_58"), val = int32(1)]; + int32 gather_59_axis_0 = const()[name = string("gather_59_axis_0"), val = int32(0)]; + int32 gather_59_batch_dims_0 = const()[name = string("gather_59_batch_dims_0"), val = int32(0)]; + bool gather_59_validate_indices_0 = const()[name = string("gather_59_validate_indices_0"), val = bool(false)]; + string var_761_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_761_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_59_to_uint16 = const()[name = string("select_59_to_uint16"), val = uint16(1)]; + tensor var_761_shape_cast_fp16_to_uint16 = cast(dtype = var_761_shape_cast_fp16_to_uint16_dtype_0, x = var_761_shape_cast_fp16)[name = string("cast_199")]; + uint16 gather_59_cast_uint16 = gather(axis = gather_59_axis_0, batch_dims = gather_59_batch_dims_0, indices = select_59_to_uint16, validate_indices = gather_59_validate_indices_0, x = var_761_shape_cast_fp16_to_uint16)[name = string("gather_59_cast_uint16")]; + string gather_59_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_59_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor model_model_layers_3_self_attn_q_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(391566976))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(396285632))))[name = string("model_model_layers_3_self_attn_q_proj_weight_to_fp16_quantized")]; + tensor linear_21_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_3_self_attn_q_proj_weight_to_fp16_quantized, x = hidden_states_97_cast_fp16)[name = string("linear_21_cast_fp16")]; + tensor model_model_layers_3_self_attn_k_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(396875520))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(398448448))))[name = string("model_model_layers_3_self_attn_k_proj_weight_to_fp16_quantized")]; + tensor linear_22_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_3_self_attn_k_proj_weight_to_fp16_quantized, x = hidden_states_97_cast_fp16)[name = string("linear_22_cast_fp16")]; + tensor model_model_layers_3_self_attn_v_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(398645120))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(400218048))))[name = string("model_model_layers_3_self_attn_v_proj_weight_to_fp16_quantized")]; + tensor linear_23_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_3_self_attn_v_proj_weight_to_fp16_quantized, x = hidden_states_97_cast_fp16)[name = string("linear_23_cast_fp16")]; + tensor concat_57x = const()[name = string("concat_57x"), val = tensor([1, -1, 24, 128])]; + tensor var_770_cast_fp16 = reshape(shape = concat_57x, x = linear_21_cast_fp16)[name = string("op_770_cast_fp16")]; + tensor q_7_perm_0 = const()[name = string("q_7_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_58x = const()[name = string("concat_58x"), val = tensor([1, -1, 8, 128])]; + tensor var_773_cast_fp16 = reshape(shape = concat_58x, x = linear_22_cast_fp16)[name = string("op_773_cast_fp16")]; + tensor k_7_perm_0 = const()[name = string("k_7_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_59x = const()[name = string("concat_59x"), val = tensor([1, -1, 8, 128])]; + tensor var_776_cast_fp16 = reshape(shape = concat_59x, x = linear_23_cast_fp16)[name = string("op_776_cast_fp16")]; + tensor v_state_7_perm_0 = const()[name = string("v_state_7_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor q_7_cast_fp16 = transpose(perm = q_7_perm_0, x = var_770_cast_fp16)[name = string("transpose_99")]; + tensor var_780_cast_fp16 = mul(x = q_7_cast_fp16, y = cos_7_cast_fp16)[name = string("op_780_cast_fp16")]; + tensor x1_13_begin_0 = const()[name = string("x1_13_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_13_end_0 = const()[name = string("x1_13_end_0"), val = tensor([1, 24, 0, 64])]; + tensor x1_13_end_mask_0 = const()[name = string("x1_13_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_13_cast_fp16 = slice_by_index(begin = x1_13_begin_0, end = x1_13_end_0, end_mask = x1_13_end_mask_0, x = q_7_cast_fp16)[name = string("x1_13_cast_fp16")]; + tensor x2_13_begin_0 = const()[name = string("x2_13_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_13_end_0 = const()[name = string("x2_13_end_0"), val = tensor([1, 24, 0, 128])]; + tensor x2_13_end_mask_0 = const()[name = string("x2_13_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_13_cast_fp16 = slice_by_index(begin = x2_13_begin_0, end = x2_13_end_0, end_mask = x2_13_end_mask_0, x = q_7_cast_fp16)[name = string("x2_13_cast_fp16")]; + fp16 const_9_promoted_to_fp16 = const()[name = string("const_9_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_791_cast_fp16 = mul(x = x2_13_cast_fp16, y = const_9_promoted_to_fp16)[name = string("op_791_cast_fp16")]; + bool var_793_interleave_0 = const()[name = string("op_793_interleave_0"), val = bool(false)]; + tensor var_793_cast_fp16 = concat(axis = var_72, interleave = var_793_interleave_0, values = (var_791_cast_fp16, x1_13_cast_fp16))[name = string("op_793_cast_fp16")]; + tensor var_794_cast_fp16 = mul(x = var_793_cast_fp16, y = sin_7_cast_fp16)[name = string("op_794_cast_fp16")]; + tensor query_states_15_cast_fp16 = add(x = var_780_cast_fp16, y = var_794_cast_fp16)[name = string("query_states_15_cast_fp16")]; + tensor k_7_cast_fp16 = transpose(perm = k_7_perm_0, x = var_773_cast_fp16)[name = string("transpose_98")]; + tensor var_796_cast_fp16 = mul(x = k_7_cast_fp16, y = cos_7_cast_fp16)[name = string("op_796_cast_fp16")]; + tensor x1_15_begin_0 = const()[name = string("x1_15_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_15_end_0 = const()[name = string("x1_15_end_0"), val = tensor([1, 8, 0, 64])]; + tensor x1_15_end_mask_0 = const()[name = string("x1_15_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_15_cast_fp16 = slice_by_index(begin = x1_15_begin_0, end = x1_15_end_0, end_mask = x1_15_end_mask_0, x = k_7_cast_fp16)[name = string("x1_15_cast_fp16")]; + tensor x2_15_begin_0 = const()[name = string("x2_15_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_15_end_0 = const()[name = string("x2_15_end_0"), val = tensor([1, 8, 0, 128])]; + tensor x2_15_end_mask_0 = const()[name = string("x2_15_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_15_cast_fp16 = slice_by_index(begin = x2_15_begin_0, end = x2_15_end_0, end_mask = x2_15_end_mask_0, x = k_7_cast_fp16)[name = string("x2_15_cast_fp16")]; + fp16 const_10_promoted_to_fp16 = const()[name = string("const_10_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_807_cast_fp16 = mul(x = x2_15_cast_fp16, y = const_10_promoted_to_fp16)[name = string("op_807_cast_fp16")]; + bool var_809_interleave_0 = const()[name = string("op_809_interleave_0"), val = bool(false)]; + tensor var_809_cast_fp16 = concat(axis = var_72, interleave = var_809_interleave_0, values = (var_807_cast_fp16, x1_15_cast_fp16))[name = string("op_809_cast_fp16")]; + tensor var_810_cast_fp16 = mul(x = var_809_cast_fp16, y = sin_7_cast_fp16)[name = string("op_810_cast_fp16")]; + tensor k_state_7_cast_fp16 = add(x = var_796_cast_fp16, y = var_810_cast_fp16)[name = string("k_state_7_cast_fp16")]; + tensor expand_dims_36 = const()[name = string("expand_dims_36"), val = tensor([0])]; + tensor expand_dims_37 = const()[name = string("expand_dims_37"), val = tensor([0])]; + tensor expand_dims_39 = const()[name = string("expand_dims_39"), val = tensor([0])]; + tensor concat_62_values0_0 = const()[name = string("concat_62_values0_0"), val = tensor([3])]; + int32 concat_62_axis_0 = const()[name = string("concat_62_axis_0"), val = int32(0)]; + bool concat_62_interleave_0 = const()[name = string("concat_62_interleave_0"), val = bool(false)]; + tensor concat_62 = concat(axis = concat_62_axis_0, interleave = concat_62_interleave_0, values = (concat_62_values0_0, expand_dims_36, expand_dims_37, expand_dims_2, expand_dims_39))[name = string("concat_62")]; + tensor key_cache_internal_tensor_assign_4_stride_0 = const()[name = string("key_cache_internal_tensor_assign_4_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor key_cache_internal_tensor_assign_4_begin_mask_0 = const()[name = string("key_cache_internal_tensor_assign_4_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_4_end_mask_0 = const()[name = string("key_cache_internal_tensor_assign_4_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor key_cache_internal_tensor_assign_4_squeeze_mask_0 = const()[name = string("key_cache_internal_tensor_assign_4_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_4_cast_fp16 = slice_update(begin = concat_62, begin_mask = key_cache_internal_tensor_assign_4_begin_mask_0, end = concat_6, end_mask = key_cache_internal_tensor_assign_4_end_mask_0, squeeze_mask = key_cache_internal_tensor_assign_4_squeeze_mask_0, stride = key_cache_internal_tensor_assign_4_stride_0, update = k_state_7_cast_fp16, x = coreml_update_state_60)[name = string("key_cache_internal_tensor_assign_4_cast_fp16")]; + write_state(data = key_cache_internal_tensor_assign_4_cast_fp16, input = key_cache)[name = string("coreml_update_state_62_write_state")]; + tensor coreml_update_state_62 = read_state(input = key_cache)[name = string("coreml_update_state_62")]; + tensor value_cache_internal_tensor_assign_4_stride_0 = const()[name = string("value_cache_internal_tensor_assign_4_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor value_cache_internal_tensor_assign_4_begin_mask_0 = const()[name = string("value_cache_internal_tensor_assign_4_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor value_cache_internal_tensor_assign_4_end_mask_0 = const()[name = string("value_cache_internal_tensor_assign_4_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor value_cache_internal_tensor_assign_4_squeeze_mask_0 = const()[name = string("value_cache_internal_tensor_assign_4_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor v_state_7_cast_fp16 = transpose(perm = v_state_7_perm_0, x = var_776_cast_fp16)[name = string("transpose_97")]; + tensor value_cache_internal_tensor_assign_4_cast_fp16 = slice_update(begin = concat_62, begin_mask = value_cache_internal_tensor_assign_4_begin_mask_0, end = concat_6, end_mask = value_cache_internal_tensor_assign_4_end_mask_0, squeeze_mask = value_cache_internal_tensor_assign_4_squeeze_mask_0, stride = value_cache_internal_tensor_assign_4_stride_0, update = v_state_7_cast_fp16, x = coreml_update_state_61)[name = string("value_cache_internal_tensor_assign_4_cast_fp16")]; + write_state(data = value_cache_internal_tensor_assign_4_cast_fp16, input = value_cache)[name = string("coreml_update_state_63_write_state")]; + tensor coreml_update_state_63 = read_state(input = value_cache)[name = string("coreml_update_state_63")]; + tensor var_833_begin_0 = const()[name = string("op_833_begin_0"), val = tensor([3, 0, 0, 0, 0])]; + tensor var_833_end_0 = const()[name = string("op_833_end_0"), val = tensor([4, 1, 8, 2048, 128])]; + tensor var_833_end_mask_0 = const()[name = string("op_833_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_833_squeeze_mask_0 = const()[name = string("op_833_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_833_cast_fp16 = slice_by_index(begin = var_833_begin_0, end = var_833_end_0, end_mask = var_833_end_mask_0, squeeze_mask = var_833_squeeze_mask_0, x = coreml_update_state_62)[name = string("op_833_cast_fp16")]; + tensor var_836_begin_0 = const()[name = string("op_836_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_836_end_mask_0 = const()[name = string("op_836_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_836_cast_fp16 = slice_by_index(begin = var_836_begin_0, end = concat_11, end_mask = var_836_end_mask_0, x = var_833_cast_fp16)[name = string("op_836_cast_fp16")]; + tensor var_838_begin_0 = const()[name = string("op_838_begin_0"), val = tensor([3, 0, 0, 0, 0])]; + tensor var_838_end_0 = const()[name = string("op_838_end_0"), val = tensor([4, 1, 8, 2048, 128])]; + tensor var_838_end_mask_0 = const()[name = string("op_838_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_838_squeeze_mask_0 = const()[name = string("op_838_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_838_cast_fp16 = slice_by_index(begin = var_838_begin_0, end = var_838_end_0, end_mask = var_838_end_mask_0, squeeze_mask = var_838_squeeze_mask_0, x = coreml_update_state_63)[name = string("op_838_cast_fp16")]; + tensor var_841_begin_0 = const()[name = string("op_841_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_841_end_mask_0 = const()[name = string("op_841_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_841_cast_fp16 = slice_by_index(begin = var_841_begin_0, end = concat_11, end_mask = var_841_end_mask_0, x = var_838_cast_fp16)[name = string("op_841_cast_fp16")]; + tensor var_843_shape_cast_fp16 = shape(x = var_836_cast_fp16)[name = string("op_843_shape_cast_fp16")]; + int32 gather_67 = const()[name = string("gather_67"), val = int32(1)]; + int32 gather_68 = const()[name = string("gather_68"), val = int32(8)]; + int32 gather_69_axis_0 = const()[name = string("gather_69_axis_0"), val = int32(0)]; + int32 gather_69_batch_dims_0 = const()[name = string("gather_69_batch_dims_0"), val = int32(0)]; + bool gather_69_validate_indices_0 = const()[name = string("gather_69_validate_indices_0"), val = bool(false)]; + string var_843_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_843_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_69_to_uint16 = const()[name = string("select_69_to_uint16"), val = uint16(2)]; + tensor var_843_shape_cast_fp16_to_uint16 = cast(dtype = var_843_shape_cast_fp16_to_uint16_dtype_0, x = var_843_shape_cast_fp16)[name = string("cast_198")]; + uint16 gather_69_cast_uint16 = gather(axis = gather_69_axis_0, batch_dims = gather_69_batch_dims_0, indices = select_69_to_uint16, validate_indices = gather_69_validate_indices_0, x = var_843_shape_cast_fp16_to_uint16)[name = string("gather_69_cast_uint16")]; + string gather_69_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_69_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_70 = const()[name = string("gather_70"), val = int32(128)]; + tensor var_850_axes_0 = const()[name = string("op_850_axes_0"), val = tensor([2])]; + tensor var_850_cast_fp16 = expand_dims(axes = var_850_axes_0, x = var_836_cast_fp16)[name = string("op_850_cast_fp16")]; + tensor shape_77_cast_fp16 = shape(x = var_850_cast_fp16)[name = string("shape_77_cast_fp16")]; + int32 concat_70_axis_0 = const()[name = string("concat_70_axis_0"), val = int32(0)]; + bool concat_70_interleave_0 = const()[name = string("concat_70_interleave_0"), val = bool(false)]; + int32 gather_69_cast_uint16_to_int32 = cast(dtype = gather_69_cast_uint16_to_int32_dtype_0, x = gather_69_cast_uint16)[name = string("cast_197")]; + tensor concat_70 = concat(axis = concat_70_axis_0, interleave = concat_70_interleave_0, values = (gather_67, gather_68, var_81, gather_69_cast_uint16_to_int32, gather_70))[name = string("concat_70")]; + tensor real_div_6 = real_div(x = concat_70, y = shape_77_cast_fp16)[name = string("real_div_6")]; + tensor hidden_states_101_cast_fp16 = tile(reps = real_div_6, x = var_850_cast_fp16)[name = string("hidden_states_101_cast_fp16")]; + tensor concat_71x = const()[name = string("concat_71x"), val = tensor([1, 24, -1, 128])]; + tensor key_states_15_cast_fp16 = reshape(shape = concat_71x, x = hidden_states_101_cast_fp16)[name = string("key_states_15_cast_fp16")]; + tensor var_860_shape_cast_fp16 = shape(x = var_841_cast_fp16)[name = string("op_860_shape_cast_fp16")]; + int32 gather_71 = const()[name = string("gather_71"), val = int32(1)]; + int32 gather_72 = const()[name = string("gather_72"), val = int32(8)]; + int32 gather_73_axis_0 = const()[name = string("gather_73_axis_0"), val = int32(0)]; + int32 gather_73_batch_dims_0 = const()[name = string("gather_73_batch_dims_0"), val = int32(0)]; + bool gather_73_validate_indices_0 = const()[name = string("gather_73_validate_indices_0"), val = bool(false)]; + string var_860_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_860_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_73_to_uint16 = const()[name = string("select_73_to_uint16"), val = uint16(2)]; + tensor var_860_shape_cast_fp16_to_uint16 = cast(dtype = var_860_shape_cast_fp16_to_uint16_dtype_0, x = var_860_shape_cast_fp16)[name = string("cast_196")]; + uint16 gather_73_cast_uint16 = gather(axis = gather_73_axis_0, batch_dims = gather_73_batch_dims_0, indices = select_73_to_uint16, validate_indices = gather_73_validate_indices_0, x = var_860_shape_cast_fp16_to_uint16)[name = string("gather_73_cast_uint16")]; + string gather_73_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_73_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_74 = const()[name = string("gather_74"), val = int32(128)]; + tensor var_867_axes_0 = const()[name = string("op_867_axes_0"), val = tensor([2])]; + tensor var_867_cast_fp16 = expand_dims(axes = var_867_axes_0, x = var_841_cast_fp16)[name = string("op_867_cast_fp16")]; + tensor shape_82_cast_fp16 = shape(x = var_867_cast_fp16)[name = string("shape_82_cast_fp16")]; + int32 concat_72_axis_0 = const()[name = string("concat_72_axis_0"), val = int32(0)]; + bool concat_72_interleave_0 = const()[name = string("concat_72_interleave_0"), val = bool(false)]; + int32 gather_73_cast_uint16_to_int32 = cast(dtype = gather_73_cast_uint16_to_int32_dtype_0, x = gather_73_cast_uint16)[name = string("cast_195")]; + tensor concat_72 = concat(axis = concat_72_axis_0, interleave = concat_72_interleave_0, values = (gather_71, gather_72, var_81, gather_73_cast_uint16_to_int32, gather_74))[name = string("concat_72")]; + tensor real_div_7 = real_div(x = concat_72, y = shape_82_cast_fp16)[name = string("real_div_7")]; + tensor hidden_states_105_cast_fp16 = tile(reps = real_div_7, x = var_867_cast_fp16)[name = string("hidden_states_105_cast_fp16")]; + tensor concat_73x = const()[name = string("concat_73x"), val = tensor([1, 24, -1, 128])]; + tensor value_states_15_cast_fp16 = reshape(shape = concat_73x, x = hidden_states_105_cast_fp16)[name = string("value_states_15_cast_fp16")]; + tensor var_877_shape_cast_fp16 = shape(x = key_states_15_cast_fp16)[name = string("op_877_shape_cast_fp16")]; + int32 gather_75_axis_0 = const()[name = string("gather_75_axis_0"), val = int32(0)]; + int32 gather_75_batch_dims_0 = const()[name = string("gather_75_batch_dims_0"), val = int32(0)]; + bool gather_75_validate_indices_0 = const()[name = string("gather_75_validate_indices_0"), val = bool(false)]; + string var_877_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_877_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_75_to_uint16 = const()[name = string("select_75_to_uint16"), val = uint16(2)]; + tensor var_877_shape_cast_fp16_to_uint16 = cast(dtype = var_877_shape_cast_fp16_to_uint16_dtype_0, x = var_877_shape_cast_fp16)[name = string("cast_194")]; + uint16 gather_75_cast_uint16 = gather(axis = gather_75_axis_0, batch_dims = gather_75_batch_dims_0, indices = select_75_to_uint16, validate_indices = gather_75_validate_indices_0, x = var_877_shape_cast_fp16_to_uint16)[name = string("gather_75_cast_uint16")]; + string gather_75_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_75_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 concat_74_values0_0 = const()[name = string("concat_74_values0_0"), val = int32(1)]; + int32 concat_74_values1_0 = const()[name = string("concat_74_values1_0"), val = int32(1)]; + int32 concat_74_values2_0 = const()[name = string("concat_74_values2_0"), val = int32(0)]; + int32 concat_74_axis_0 = const()[name = string("concat_74_axis_0"), val = int32(0)]; + bool concat_74_interleave_0 = const()[name = string("concat_74_interleave_0"), val = bool(false)]; + int32 gather_75_cast_uint16_to_int32 = cast(dtype = gather_75_cast_uint16_to_int32_dtype_0, x = gather_75_cast_uint16)[name = string("cast_193")]; + tensor concat_74 = concat(axis = concat_74_axis_0, interleave = concat_74_interleave_0, values = (concat_74_values0_0, concat_74_values1_0, concat_74_values2_0, gather_75_cast_uint16_to_int32))[name = string("concat_74")]; + tensor causal_mask_9_begin_0 = const()[name = string("causal_mask_9_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor causal_mask_9_end_mask_0 = const()[name = string("causal_mask_9_end_mask_0"), val = tensor([true, true, true, false])]; + tensor causal_mask_9_cast_fp16 = slice_by_index(begin = causal_mask_9_begin_0, end = concat_74, end_mask = causal_mask_9_end_mask_0, x = causal_mask)[name = string("causal_mask_9_cast_fp16")]; + tensor attn_output_13_cast_fp16 = scaled_dot_product_attention(attn_mask = causal_mask_9_cast_fp16, key = key_states_15_cast_fp16, query = query_states_15_cast_fp16, value = value_states_15_cast_fp16)[name = string("attn_output_13_cast_fp16")]; + tensor var_883_perm_0 = const()[name = string("op_883_perm_0"), val = tensor([0, 2, 1, 3])]; + int32 concat_75_axis_0 = const()[name = string("concat_75_axis_0"), val = int32(0)]; + bool concat_75_interleave_0 = const()[name = string("concat_75_interleave_0"), val = bool(false)]; + int32 gather_59_cast_uint16_to_int32 = cast(dtype = gather_59_cast_uint16_to_int32_dtype_0, x = gather_59_cast_uint16)[name = string("cast_192")]; + tensor concat_75 = concat(axis = concat_75_axis_0, interleave = concat_75_interleave_0, values = (gather_58, gather_59_cast_uint16_to_int32, var_72))[name = string("concat_75")]; + tensor var_883_cast_fp16 = transpose(perm = var_883_perm_0, x = attn_output_13_cast_fp16)[name = string("transpose_96")]; + tensor input_25_cast_fp16 = reshape(shape = concat_75, x = var_883_cast_fp16)[name = string("input_25_cast_fp16")]; + tensor model_model_layers_3_self_attn_o_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(400414720))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(405133376))))[name = string("model_model_layers_3_self_attn_o_proj_weight_to_fp16_quantized")]; + tensor linear_24_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_3_self_attn_o_proj_weight_to_fp16_quantized, x = input_25_cast_fp16)[name = string("linear_24_cast_fp16")]; + tensor hidden_states_109_cast_fp16 = add(x = hidden_states_89_cast_fp16, y = linear_24_cast_fp16)[name = string("hidden_states_109_cast_fp16")]; + fp16 var_78_promoted_7_to_fp16 = const()[name = string("op_78_promoted_7_to_fp16"), val = fp16(0x1p+1)]; + tensor var_892_cast_fp16 = pow(x = hidden_states_109_cast_fp16, y = var_78_promoted_7_to_fp16)[name = string("op_892_cast_fp16")]; + tensor variance_15_axes_0 = const()[name = string("variance_15_axes_0"), val = tensor([-1])]; + bool variance_15_keep_dims_0 = const()[name = string("variance_15_keep_dims_0"), val = bool(true)]; + tensor variance_15_cast_fp16 = reduce_mean(axes = variance_15_axes_0, keep_dims = variance_15_keep_dims_0, x = var_892_cast_fp16)[name = string("variance_15_cast_fp16")]; + fp16 var_895_to_fp16 = const()[name = string("op_895_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_896_cast_fp16 = add(x = variance_15_cast_fp16, y = var_895_to_fp16)[name = string("op_896_cast_fp16")]; + fp32 var_897_epsilon_0 = const()[name = string("op_897_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_897_cast_fp16 = rsqrt(epsilon = var_897_epsilon_0, x = var_896_cast_fp16)[name = string("op_897_cast_fp16")]; + tensor hidden_states_113_cast_fp16 = mul(x = hidden_states_109_cast_fp16, y = var_897_cast_fp16)[name = string("hidden_states_113_cast_fp16")]; + tensor model_model_layers_3_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_3_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(405723264)))]; + tensor input_27_cast_fp16 = mul(x = model_model_layers_3_post_attention_layernorm_weight_to_fp16, y = hidden_states_113_cast_fp16)[name = string("input_27_cast_fp16")]; + tensor model_model_layers_3_mlp_gate_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(405729472))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(418312448))))[name = string("model_model_layers_3_mlp_gate_proj_weight_to_fp16_quantized")]; + tensor linear_25_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_3_mlp_gate_proj_weight_to_fp16_quantized, x = input_27_cast_fp16)[name = string("linear_25_cast_fp16")]; + tensor var_909_cast_fp16 = silu(x = linear_25_cast_fp16)[name = string("op_909_cast_fp16")]; + tensor model_model_layers_3_mlp_up_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(419885376))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(432468352))))[name = string("model_model_layers_3_mlp_up_proj_weight_to_fp16_quantized")]; + tensor linear_26_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_3_mlp_up_proj_weight_to_fp16_quantized, x = input_27_cast_fp16)[name = string("linear_26_cast_fp16")]; + tensor input_31_cast_fp16 = mul(x = var_909_cast_fp16, y = linear_26_cast_fp16)[name = string("input_31_cast_fp16")]; + tensor model_model_layers_3_mlp_down_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(434041280))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(446624256))))[name = string("model_model_layers_3_mlp_down_proj_weight_to_fp16_quantized")]; + tensor linear_27_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_3_mlp_down_proj_weight_to_fp16_quantized, x = input_31_cast_fp16)[name = string("linear_27_cast_fp16")]; + tensor hidden_states_119_cast_fp16 = add(x = hidden_states_109_cast_fp16, y = linear_27_cast_fp16)[name = string("hidden_states_119_cast_fp16")]; + fp16 var_78_promoted_8_to_fp16 = const()[name = string("op_78_promoted_8_to_fp16"), val = fp16(0x1p+1)]; + tensor var_922_cast_fp16 = pow(x = hidden_states_119_cast_fp16, y = var_78_promoted_8_to_fp16)[name = string("op_922_cast_fp16")]; + tensor variance_17_axes_0 = const()[name = string("variance_17_axes_0"), val = tensor([-1])]; + bool variance_17_keep_dims_0 = const()[name = string("variance_17_keep_dims_0"), val = bool(true)]; + tensor variance_17_cast_fp16 = reduce_mean(axes = variance_17_axes_0, keep_dims = variance_17_keep_dims_0, x = var_922_cast_fp16)[name = string("variance_17_cast_fp16")]; + fp16 var_925_to_fp16 = const()[name = string("op_925_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_926_cast_fp16 = add(x = variance_17_cast_fp16, y = var_925_to_fp16)[name = string("op_926_cast_fp16")]; + fp32 var_927_epsilon_0 = const()[name = string("op_927_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_927_cast_fp16 = rsqrt(epsilon = var_927_epsilon_0, x = var_926_cast_fp16)[name = string("op_927_cast_fp16")]; + tensor hidden_states_123_cast_fp16 = mul(x = hidden_states_119_cast_fp16, y = var_927_cast_fp16)[name = string("hidden_states_123_cast_fp16")]; + tensor model_model_layers_4_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_4_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(448197184)))]; + tensor hidden_states_127_cast_fp16 = mul(x = model_model_layers_4_input_layernorm_weight_to_fp16, y = hidden_states_123_cast_fp16)[name = string("hidden_states_127_cast_fp16")]; + tensor var_938_shape_cast_fp16 = shape(x = hidden_states_127_cast_fp16)[name = string("op_938_shape_cast_fp16")]; + int32 gather_76 = const()[name = string("gather_76"), val = int32(1)]; + int32 gather_77_axis_0 = const()[name = string("gather_77_axis_0"), val = int32(0)]; + int32 gather_77_batch_dims_0 = const()[name = string("gather_77_batch_dims_0"), val = int32(0)]; + bool gather_77_validate_indices_0 = const()[name = string("gather_77_validate_indices_0"), val = bool(false)]; + string var_938_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_938_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_77_to_uint16 = const()[name = string("select_77_to_uint16"), val = uint16(1)]; + tensor var_938_shape_cast_fp16_to_uint16 = cast(dtype = var_938_shape_cast_fp16_to_uint16_dtype_0, x = var_938_shape_cast_fp16)[name = string("cast_191")]; + uint16 gather_77_cast_uint16 = gather(axis = gather_77_axis_0, batch_dims = gather_77_batch_dims_0, indices = select_77_to_uint16, validate_indices = gather_77_validate_indices_0, x = var_938_shape_cast_fp16_to_uint16)[name = string("gather_77_cast_uint16")]; + string gather_77_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_77_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor model_model_layers_4_self_attn_q_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(448203392))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(452922048))))[name = string("model_model_layers_4_self_attn_q_proj_weight_to_fp16_quantized")]; + tensor linear_28_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_4_self_attn_q_proj_weight_to_fp16_quantized, x = hidden_states_127_cast_fp16)[name = string("linear_28_cast_fp16")]; + tensor model_model_layers_4_self_attn_k_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(453511936))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(455084864))))[name = string("model_model_layers_4_self_attn_k_proj_weight_to_fp16_quantized")]; + tensor linear_29_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_4_self_attn_k_proj_weight_to_fp16_quantized, x = hidden_states_127_cast_fp16)[name = string("linear_29_cast_fp16")]; + tensor model_model_layers_4_self_attn_v_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(455281536))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(456854464))))[name = string("model_model_layers_4_self_attn_v_proj_weight_to_fp16_quantized")]; + tensor linear_30_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_4_self_attn_v_proj_weight_to_fp16_quantized, x = hidden_states_127_cast_fp16)[name = string("linear_30_cast_fp16")]; + tensor concat_76x = const()[name = string("concat_76x"), val = tensor([1, -1, 24, 128])]; + tensor var_947_cast_fp16 = reshape(shape = concat_76x, x = linear_28_cast_fp16)[name = string("op_947_cast_fp16")]; + tensor q_9_perm_0 = const()[name = string("q_9_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_77x = const()[name = string("concat_77x"), val = tensor([1, -1, 8, 128])]; + tensor var_950_cast_fp16 = reshape(shape = concat_77x, x = linear_29_cast_fp16)[name = string("op_950_cast_fp16")]; + tensor k_9_perm_0 = const()[name = string("k_9_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_78x = const()[name = string("concat_78x"), val = tensor([1, -1, 8, 128])]; + tensor var_953_cast_fp16 = reshape(shape = concat_78x, x = linear_30_cast_fp16)[name = string("op_953_cast_fp16")]; + tensor v_state_9_perm_0 = const()[name = string("v_state_9_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor q_9_cast_fp16 = transpose(perm = q_9_perm_0, x = var_947_cast_fp16)[name = string("transpose_95")]; + tensor var_957_cast_fp16 = mul(x = q_9_cast_fp16, y = cos_7_cast_fp16)[name = string("op_957_cast_fp16")]; + tensor x1_17_begin_0 = const()[name = string("x1_17_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_17_end_0 = const()[name = string("x1_17_end_0"), val = tensor([1, 24, 0, 64])]; + tensor x1_17_end_mask_0 = const()[name = string("x1_17_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_17_cast_fp16 = slice_by_index(begin = x1_17_begin_0, end = x1_17_end_0, end_mask = x1_17_end_mask_0, x = q_9_cast_fp16)[name = string("x1_17_cast_fp16")]; + tensor x2_17_begin_0 = const()[name = string("x2_17_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_17_end_0 = const()[name = string("x2_17_end_0"), val = tensor([1, 24, 0, 128])]; + tensor x2_17_end_mask_0 = const()[name = string("x2_17_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_17_cast_fp16 = slice_by_index(begin = x2_17_begin_0, end = x2_17_end_0, end_mask = x2_17_end_mask_0, x = q_9_cast_fp16)[name = string("x2_17_cast_fp16")]; + fp16 const_11_promoted_to_fp16 = const()[name = string("const_11_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_968_cast_fp16 = mul(x = x2_17_cast_fp16, y = const_11_promoted_to_fp16)[name = string("op_968_cast_fp16")]; + bool var_970_interleave_0 = const()[name = string("op_970_interleave_0"), val = bool(false)]; + tensor var_970_cast_fp16 = concat(axis = var_72, interleave = var_970_interleave_0, values = (var_968_cast_fp16, x1_17_cast_fp16))[name = string("op_970_cast_fp16")]; + tensor var_971_cast_fp16 = mul(x = var_970_cast_fp16, y = sin_7_cast_fp16)[name = string("op_971_cast_fp16")]; + tensor query_states_19_cast_fp16 = add(x = var_957_cast_fp16, y = var_971_cast_fp16)[name = string("query_states_19_cast_fp16")]; + tensor k_9_cast_fp16 = transpose(perm = k_9_perm_0, x = var_950_cast_fp16)[name = string("transpose_94")]; + tensor var_973_cast_fp16 = mul(x = k_9_cast_fp16, y = cos_7_cast_fp16)[name = string("op_973_cast_fp16")]; + tensor x1_19_begin_0 = const()[name = string("x1_19_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_19_end_0 = const()[name = string("x1_19_end_0"), val = tensor([1, 8, 0, 64])]; + tensor x1_19_end_mask_0 = const()[name = string("x1_19_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_19_cast_fp16 = slice_by_index(begin = x1_19_begin_0, end = x1_19_end_0, end_mask = x1_19_end_mask_0, x = k_9_cast_fp16)[name = string("x1_19_cast_fp16")]; + tensor x2_19_begin_0 = const()[name = string("x2_19_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_19_end_0 = const()[name = string("x2_19_end_0"), val = tensor([1, 8, 0, 128])]; + tensor x2_19_end_mask_0 = const()[name = string("x2_19_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_19_cast_fp16 = slice_by_index(begin = x2_19_begin_0, end = x2_19_end_0, end_mask = x2_19_end_mask_0, x = k_9_cast_fp16)[name = string("x2_19_cast_fp16")]; + fp16 const_12_promoted_to_fp16 = const()[name = string("const_12_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_984_cast_fp16 = mul(x = x2_19_cast_fp16, y = const_12_promoted_to_fp16)[name = string("op_984_cast_fp16")]; + bool var_986_interleave_0 = const()[name = string("op_986_interleave_0"), val = bool(false)]; + tensor var_986_cast_fp16 = concat(axis = var_72, interleave = var_986_interleave_0, values = (var_984_cast_fp16, x1_19_cast_fp16))[name = string("op_986_cast_fp16")]; + tensor var_987_cast_fp16 = mul(x = var_986_cast_fp16, y = sin_7_cast_fp16)[name = string("op_987_cast_fp16")]; + tensor k_state_9_cast_fp16 = add(x = var_973_cast_fp16, y = var_987_cast_fp16)[name = string("k_state_9_cast_fp16")]; + tensor expand_dims_48 = const()[name = string("expand_dims_48"), val = tensor([0])]; + tensor expand_dims_49 = const()[name = string("expand_dims_49"), val = tensor([0])]; + tensor expand_dims_51 = const()[name = string("expand_dims_51"), val = tensor([0])]; + tensor concat_81_values0_0 = const()[name = string("concat_81_values0_0"), val = tensor([4])]; + int32 concat_81_axis_0 = const()[name = string("concat_81_axis_0"), val = int32(0)]; + bool concat_81_interleave_0 = const()[name = string("concat_81_interleave_0"), val = bool(false)]; + tensor concat_81 = concat(axis = concat_81_axis_0, interleave = concat_81_interleave_0, values = (concat_81_values0_0, expand_dims_48, expand_dims_49, expand_dims_2, expand_dims_51))[name = string("concat_81")]; + tensor key_cache_internal_tensor_assign_5_stride_0 = const()[name = string("key_cache_internal_tensor_assign_5_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor key_cache_internal_tensor_assign_5_begin_mask_0 = const()[name = string("key_cache_internal_tensor_assign_5_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_5_end_mask_0 = const()[name = string("key_cache_internal_tensor_assign_5_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor key_cache_internal_tensor_assign_5_squeeze_mask_0 = const()[name = string("key_cache_internal_tensor_assign_5_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_5_cast_fp16 = slice_update(begin = concat_81, begin_mask = key_cache_internal_tensor_assign_5_begin_mask_0, end = concat_6, end_mask = key_cache_internal_tensor_assign_5_end_mask_0, squeeze_mask = key_cache_internal_tensor_assign_5_squeeze_mask_0, stride = key_cache_internal_tensor_assign_5_stride_0, update = k_state_9_cast_fp16, x = coreml_update_state_62)[name = string("key_cache_internal_tensor_assign_5_cast_fp16")]; + write_state(data = key_cache_internal_tensor_assign_5_cast_fp16, input = key_cache)[name = string("coreml_update_state_64_write_state")]; + tensor coreml_update_state_64 = read_state(input = key_cache)[name = string("coreml_update_state_64")]; + tensor value_cache_internal_tensor_assign_5_stride_0 = const()[name = string("value_cache_internal_tensor_assign_5_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor value_cache_internal_tensor_assign_5_begin_mask_0 = const()[name = string("value_cache_internal_tensor_assign_5_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor value_cache_internal_tensor_assign_5_end_mask_0 = const()[name = string("value_cache_internal_tensor_assign_5_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor value_cache_internal_tensor_assign_5_squeeze_mask_0 = const()[name = string("value_cache_internal_tensor_assign_5_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor v_state_9_cast_fp16 = transpose(perm = v_state_9_perm_0, x = var_953_cast_fp16)[name = string("transpose_93")]; + tensor value_cache_internal_tensor_assign_5_cast_fp16 = slice_update(begin = concat_81, begin_mask = value_cache_internal_tensor_assign_5_begin_mask_0, end = concat_6, end_mask = value_cache_internal_tensor_assign_5_end_mask_0, squeeze_mask = value_cache_internal_tensor_assign_5_squeeze_mask_0, stride = value_cache_internal_tensor_assign_5_stride_0, update = v_state_9_cast_fp16, x = coreml_update_state_63)[name = string("value_cache_internal_tensor_assign_5_cast_fp16")]; + write_state(data = value_cache_internal_tensor_assign_5_cast_fp16, input = value_cache)[name = string("coreml_update_state_65_write_state")]; + tensor coreml_update_state_65 = read_state(input = value_cache)[name = string("coreml_update_state_65")]; + tensor var_1010_begin_0 = const()[name = string("op_1010_begin_0"), val = tensor([4, 0, 0, 0, 0])]; + tensor var_1010_end_0 = const()[name = string("op_1010_end_0"), val = tensor([5, 1, 8, 2048, 128])]; + tensor var_1010_end_mask_0 = const()[name = string("op_1010_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_1010_squeeze_mask_0 = const()[name = string("op_1010_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_1010_cast_fp16 = slice_by_index(begin = var_1010_begin_0, end = var_1010_end_0, end_mask = var_1010_end_mask_0, squeeze_mask = var_1010_squeeze_mask_0, x = coreml_update_state_64)[name = string("op_1010_cast_fp16")]; + tensor var_1013_begin_0 = const()[name = string("op_1013_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_1013_end_mask_0 = const()[name = string("op_1013_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_1013_cast_fp16 = slice_by_index(begin = var_1013_begin_0, end = concat_11, end_mask = var_1013_end_mask_0, x = var_1010_cast_fp16)[name = string("op_1013_cast_fp16")]; + tensor var_1015_begin_0 = const()[name = string("op_1015_begin_0"), val = tensor([4, 0, 0, 0, 0])]; + tensor var_1015_end_0 = const()[name = string("op_1015_end_0"), val = tensor([5, 1, 8, 2048, 128])]; + tensor var_1015_end_mask_0 = const()[name = string("op_1015_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_1015_squeeze_mask_0 = const()[name = string("op_1015_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_1015_cast_fp16 = slice_by_index(begin = var_1015_begin_0, end = var_1015_end_0, end_mask = var_1015_end_mask_0, squeeze_mask = var_1015_squeeze_mask_0, x = coreml_update_state_65)[name = string("op_1015_cast_fp16")]; + tensor var_1018_begin_0 = const()[name = string("op_1018_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_1018_end_mask_0 = const()[name = string("op_1018_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_1018_cast_fp16 = slice_by_index(begin = var_1018_begin_0, end = concat_11, end_mask = var_1018_end_mask_0, x = var_1015_cast_fp16)[name = string("op_1018_cast_fp16")]; + tensor var_1020_shape_cast_fp16 = shape(x = var_1013_cast_fp16)[name = string("op_1020_shape_cast_fp16")]; + int32 gather_85 = const()[name = string("gather_85"), val = int32(1)]; + int32 gather_86 = const()[name = string("gather_86"), val = int32(8)]; + int32 gather_87_axis_0 = const()[name = string("gather_87_axis_0"), val = int32(0)]; + int32 gather_87_batch_dims_0 = const()[name = string("gather_87_batch_dims_0"), val = int32(0)]; + bool gather_87_validate_indices_0 = const()[name = string("gather_87_validate_indices_0"), val = bool(false)]; + string var_1020_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_1020_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_87_to_uint16 = const()[name = string("select_87_to_uint16"), val = uint16(2)]; + tensor var_1020_shape_cast_fp16_to_uint16 = cast(dtype = var_1020_shape_cast_fp16_to_uint16_dtype_0, x = var_1020_shape_cast_fp16)[name = string("cast_190")]; + uint16 gather_87_cast_uint16 = gather(axis = gather_87_axis_0, batch_dims = gather_87_batch_dims_0, indices = select_87_to_uint16, validate_indices = gather_87_validate_indices_0, x = var_1020_shape_cast_fp16_to_uint16)[name = string("gather_87_cast_uint16")]; + string gather_87_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_87_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_88 = const()[name = string("gather_88"), val = int32(128)]; + tensor var_1027_axes_0 = const()[name = string("op_1027_axes_0"), val = tensor([2])]; + tensor var_1027_cast_fp16 = expand_dims(axes = var_1027_axes_0, x = var_1013_cast_fp16)[name = string("op_1027_cast_fp16")]; + tensor shape_97_cast_fp16 = shape(x = var_1027_cast_fp16)[name = string("shape_97_cast_fp16")]; + int32 concat_89_axis_0 = const()[name = string("concat_89_axis_0"), val = int32(0)]; + bool concat_89_interleave_0 = const()[name = string("concat_89_interleave_0"), val = bool(false)]; + int32 gather_87_cast_uint16_to_int32 = cast(dtype = gather_87_cast_uint16_to_int32_dtype_0, x = gather_87_cast_uint16)[name = string("cast_189")]; + tensor concat_89 = concat(axis = concat_89_axis_0, interleave = concat_89_interleave_0, values = (gather_85, gather_86, var_81, gather_87_cast_uint16_to_int32, gather_88))[name = string("concat_89")]; + tensor real_div_8 = real_div(x = concat_89, y = shape_97_cast_fp16)[name = string("real_div_8")]; + tensor hidden_states_131_cast_fp16 = tile(reps = real_div_8, x = var_1027_cast_fp16)[name = string("hidden_states_131_cast_fp16")]; + tensor concat_90x = const()[name = string("concat_90x"), val = tensor([1, 24, -1, 128])]; + tensor key_states_19_cast_fp16 = reshape(shape = concat_90x, x = hidden_states_131_cast_fp16)[name = string("key_states_19_cast_fp16")]; + tensor var_1037_shape_cast_fp16 = shape(x = var_1018_cast_fp16)[name = string("op_1037_shape_cast_fp16")]; + int32 gather_89 = const()[name = string("gather_89"), val = int32(1)]; + int32 gather_90 = const()[name = string("gather_90"), val = int32(8)]; + int32 gather_91_axis_0 = const()[name = string("gather_91_axis_0"), val = int32(0)]; + int32 gather_91_batch_dims_0 = const()[name = string("gather_91_batch_dims_0"), val = int32(0)]; + bool gather_91_validate_indices_0 = const()[name = string("gather_91_validate_indices_0"), val = bool(false)]; + string var_1037_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_1037_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_91_to_uint16 = const()[name = string("select_91_to_uint16"), val = uint16(2)]; + tensor var_1037_shape_cast_fp16_to_uint16 = cast(dtype = var_1037_shape_cast_fp16_to_uint16_dtype_0, x = var_1037_shape_cast_fp16)[name = string("cast_188")]; + uint16 gather_91_cast_uint16 = gather(axis = gather_91_axis_0, batch_dims = gather_91_batch_dims_0, indices = select_91_to_uint16, validate_indices = gather_91_validate_indices_0, x = var_1037_shape_cast_fp16_to_uint16)[name = string("gather_91_cast_uint16")]; + string gather_91_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_91_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_92 = const()[name = string("gather_92"), val = int32(128)]; + tensor var_1044_axes_0 = const()[name = string("op_1044_axes_0"), val = tensor([2])]; + tensor var_1044_cast_fp16 = expand_dims(axes = var_1044_axes_0, x = var_1018_cast_fp16)[name = string("op_1044_cast_fp16")]; + tensor shape_102_cast_fp16 = shape(x = var_1044_cast_fp16)[name = string("shape_102_cast_fp16")]; + int32 concat_91_axis_0 = const()[name = string("concat_91_axis_0"), val = int32(0)]; + bool concat_91_interleave_0 = const()[name = string("concat_91_interleave_0"), val = bool(false)]; + int32 gather_91_cast_uint16_to_int32 = cast(dtype = gather_91_cast_uint16_to_int32_dtype_0, x = gather_91_cast_uint16)[name = string("cast_187")]; + tensor concat_91 = concat(axis = concat_91_axis_0, interleave = concat_91_interleave_0, values = (gather_89, gather_90, var_81, gather_91_cast_uint16_to_int32, gather_92))[name = string("concat_91")]; + tensor real_div_9 = real_div(x = concat_91, y = shape_102_cast_fp16)[name = string("real_div_9")]; + tensor hidden_states_135_cast_fp16 = tile(reps = real_div_9, x = var_1044_cast_fp16)[name = string("hidden_states_135_cast_fp16")]; + tensor concat_92x = const()[name = string("concat_92x"), val = tensor([1, 24, -1, 128])]; + tensor value_states_19_cast_fp16 = reshape(shape = concat_92x, x = hidden_states_135_cast_fp16)[name = string("value_states_19_cast_fp16")]; + tensor var_1054_shape_cast_fp16 = shape(x = key_states_19_cast_fp16)[name = string("op_1054_shape_cast_fp16")]; + int32 gather_93_axis_0 = const()[name = string("gather_93_axis_0"), val = int32(0)]; + int32 gather_93_batch_dims_0 = const()[name = string("gather_93_batch_dims_0"), val = int32(0)]; + bool gather_93_validate_indices_0 = const()[name = string("gather_93_validate_indices_0"), val = bool(false)]; + string var_1054_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_1054_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_93_to_uint16 = const()[name = string("select_93_to_uint16"), val = uint16(2)]; + tensor var_1054_shape_cast_fp16_to_uint16 = cast(dtype = var_1054_shape_cast_fp16_to_uint16_dtype_0, x = var_1054_shape_cast_fp16)[name = string("cast_186")]; + uint16 gather_93_cast_uint16 = gather(axis = gather_93_axis_0, batch_dims = gather_93_batch_dims_0, indices = select_93_to_uint16, validate_indices = gather_93_validate_indices_0, x = var_1054_shape_cast_fp16_to_uint16)[name = string("gather_93_cast_uint16")]; + string gather_93_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_93_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 concat_93_values0_0 = const()[name = string("concat_93_values0_0"), val = int32(1)]; + int32 concat_93_values1_0 = const()[name = string("concat_93_values1_0"), val = int32(1)]; + int32 concat_93_values2_0 = const()[name = string("concat_93_values2_0"), val = int32(0)]; + int32 concat_93_axis_0 = const()[name = string("concat_93_axis_0"), val = int32(0)]; + bool concat_93_interleave_0 = const()[name = string("concat_93_interleave_0"), val = bool(false)]; + int32 gather_93_cast_uint16_to_int32 = cast(dtype = gather_93_cast_uint16_to_int32_dtype_0, x = gather_93_cast_uint16)[name = string("cast_185")]; + tensor concat_93 = concat(axis = concat_93_axis_0, interleave = concat_93_interleave_0, values = (concat_93_values0_0, concat_93_values1_0, concat_93_values2_0, gather_93_cast_uint16_to_int32))[name = string("concat_93")]; + tensor causal_mask_11_begin_0 = const()[name = string("causal_mask_11_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor causal_mask_11_end_mask_0 = const()[name = string("causal_mask_11_end_mask_0"), val = tensor([true, true, true, false])]; + tensor causal_mask_11_cast_fp16 = slice_by_index(begin = causal_mask_11_begin_0, end = concat_93, end_mask = causal_mask_11_end_mask_0, x = causal_mask)[name = string("causal_mask_11_cast_fp16")]; + tensor attn_output_17_cast_fp16 = scaled_dot_product_attention(attn_mask = causal_mask_11_cast_fp16, key = key_states_19_cast_fp16, query = query_states_19_cast_fp16, value = value_states_19_cast_fp16)[name = string("attn_output_17_cast_fp16")]; + tensor var_1060_perm_0 = const()[name = string("op_1060_perm_0"), val = tensor([0, 2, 1, 3])]; + int32 concat_94_axis_0 = const()[name = string("concat_94_axis_0"), val = int32(0)]; + bool concat_94_interleave_0 = const()[name = string("concat_94_interleave_0"), val = bool(false)]; + int32 gather_77_cast_uint16_to_int32 = cast(dtype = gather_77_cast_uint16_to_int32_dtype_0, x = gather_77_cast_uint16)[name = string("cast_184")]; + tensor concat_94 = concat(axis = concat_94_axis_0, interleave = concat_94_interleave_0, values = (gather_76, gather_77_cast_uint16_to_int32, var_72))[name = string("concat_94")]; + tensor var_1060_cast_fp16 = transpose(perm = var_1060_perm_0, x = attn_output_17_cast_fp16)[name = string("transpose_92")]; + tensor input_33_cast_fp16 = reshape(shape = concat_94, x = var_1060_cast_fp16)[name = string("input_33_cast_fp16")]; + tensor model_model_layers_4_self_attn_o_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(457051136))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(461769792))))[name = string("model_model_layers_4_self_attn_o_proj_weight_to_fp16_quantized")]; + tensor linear_31_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_4_self_attn_o_proj_weight_to_fp16_quantized, x = input_33_cast_fp16)[name = string("linear_31_cast_fp16")]; + tensor hidden_states_139_cast_fp16 = add(x = hidden_states_119_cast_fp16, y = linear_31_cast_fp16)[name = string("hidden_states_139_cast_fp16")]; + fp16 var_78_promoted_9_to_fp16 = const()[name = string("op_78_promoted_9_to_fp16"), val = fp16(0x1p+1)]; + tensor var_1069_cast_fp16 = pow(x = hidden_states_139_cast_fp16, y = var_78_promoted_9_to_fp16)[name = string("op_1069_cast_fp16")]; + tensor variance_19_axes_0 = const()[name = string("variance_19_axes_0"), val = tensor([-1])]; + bool variance_19_keep_dims_0 = const()[name = string("variance_19_keep_dims_0"), val = bool(true)]; + tensor variance_19_cast_fp16 = reduce_mean(axes = variance_19_axes_0, keep_dims = variance_19_keep_dims_0, x = var_1069_cast_fp16)[name = string("variance_19_cast_fp16")]; + fp16 var_1072_to_fp16 = const()[name = string("op_1072_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_1073_cast_fp16 = add(x = variance_19_cast_fp16, y = var_1072_to_fp16)[name = string("op_1073_cast_fp16")]; + fp32 var_1074_epsilon_0 = const()[name = string("op_1074_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_1074_cast_fp16 = rsqrt(epsilon = var_1074_epsilon_0, x = var_1073_cast_fp16)[name = string("op_1074_cast_fp16")]; + tensor hidden_states_143_cast_fp16 = mul(x = hidden_states_139_cast_fp16, y = var_1074_cast_fp16)[name = string("hidden_states_143_cast_fp16")]; + tensor model_model_layers_4_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_4_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(462359680)))]; + tensor input_35_cast_fp16 = mul(x = model_model_layers_4_post_attention_layernorm_weight_to_fp16, y = hidden_states_143_cast_fp16)[name = string("input_35_cast_fp16")]; + tensor model_model_layers_4_mlp_gate_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(462365888))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(474948864))))[name = string("model_model_layers_4_mlp_gate_proj_weight_to_fp16_quantized")]; + tensor linear_32_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_4_mlp_gate_proj_weight_to_fp16_quantized, x = input_35_cast_fp16)[name = string("linear_32_cast_fp16")]; + tensor var_1086_cast_fp16 = silu(x = linear_32_cast_fp16)[name = string("op_1086_cast_fp16")]; + tensor model_model_layers_4_mlp_up_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(476521792))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(489104768))))[name = string("model_model_layers_4_mlp_up_proj_weight_to_fp16_quantized")]; + tensor linear_33_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_4_mlp_up_proj_weight_to_fp16_quantized, x = input_35_cast_fp16)[name = string("linear_33_cast_fp16")]; + tensor input_39_cast_fp16 = mul(x = var_1086_cast_fp16, y = linear_33_cast_fp16)[name = string("input_39_cast_fp16")]; + tensor model_model_layers_4_mlp_down_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(490677696))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(503260672))))[name = string("model_model_layers_4_mlp_down_proj_weight_to_fp16_quantized")]; + tensor linear_34_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_4_mlp_down_proj_weight_to_fp16_quantized, x = input_39_cast_fp16)[name = string("linear_34_cast_fp16")]; + tensor hidden_states_149_cast_fp16 = add(x = hidden_states_139_cast_fp16, y = linear_34_cast_fp16)[name = string("hidden_states_149_cast_fp16")]; + fp16 var_78_promoted_10_to_fp16 = const()[name = string("op_78_promoted_10_to_fp16"), val = fp16(0x1p+1)]; + tensor var_1099_cast_fp16 = pow(x = hidden_states_149_cast_fp16, y = var_78_promoted_10_to_fp16)[name = string("op_1099_cast_fp16")]; + tensor variance_21_axes_0 = const()[name = string("variance_21_axes_0"), val = tensor([-1])]; + bool variance_21_keep_dims_0 = const()[name = string("variance_21_keep_dims_0"), val = bool(true)]; + tensor variance_21_cast_fp16 = reduce_mean(axes = variance_21_axes_0, keep_dims = variance_21_keep_dims_0, x = var_1099_cast_fp16)[name = string("variance_21_cast_fp16")]; + fp16 var_1102_to_fp16 = const()[name = string("op_1102_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_1103_cast_fp16 = add(x = variance_21_cast_fp16, y = var_1102_to_fp16)[name = string("op_1103_cast_fp16")]; + fp32 var_1104_epsilon_0 = const()[name = string("op_1104_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_1104_cast_fp16 = rsqrt(epsilon = var_1104_epsilon_0, x = var_1103_cast_fp16)[name = string("op_1104_cast_fp16")]; + tensor hidden_states_153_cast_fp16 = mul(x = hidden_states_149_cast_fp16, y = var_1104_cast_fp16)[name = string("hidden_states_153_cast_fp16")]; + tensor model_model_layers_5_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_5_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(504833600)))]; + tensor hidden_states_157_cast_fp16 = mul(x = model_model_layers_5_input_layernorm_weight_to_fp16, y = hidden_states_153_cast_fp16)[name = string("hidden_states_157_cast_fp16")]; + tensor var_1115_shape_cast_fp16 = shape(x = hidden_states_157_cast_fp16)[name = string("op_1115_shape_cast_fp16")]; + int32 gather_94 = const()[name = string("gather_94"), val = int32(1)]; + int32 gather_95_axis_0 = const()[name = string("gather_95_axis_0"), val = int32(0)]; + int32 gather_95_batch_dims_0 = const()[name = string("gather_95_batch_dims_0"), val = int32(0)]; + bool gather_95_validate_indices_0 = const()[name = string("gather_95_validate_indices_0"), val = bool(false)]; + string var_1115_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_1115_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_95_to_uint16 = const()[name = string("select_95_to_uint16"), val = uint16(1)]; + tensor var_1115_shape_cast_fp16_to_uint16 = cast(dtype = var_1115_shape_cast_fp16_to_uint16_dtype_0, x = var_1115_shape_cast_fp16)[name = string("cast_183")]; + uint16 gather_95_cast_uint16 = gather(axis = gather_95_axis_0, batch_dims = gather_95_batch_dims_0, indices = select_95_to_uint16, validate_indices = gather_95_validate_indices_0, x = var_1115_shape_cast_fp16_to_uint16)[name = string("gather_95_cast_uint16")]; + string gather_95_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_95_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor model_model_layers_5_self_attn_q_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(504839808))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(509558464))))[name = string("model_model_layers_5_self_attn_q_proj_weight_to_fp16_quantized")]; + tensor linear_35_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_5_self_attn_q_proj_weight_to_fp16_quantized, x = hidden_states_157_cast_fp16)[name = string("linear_35_cast_fp16")]; + tensor model_model_layers_5_self_attn_k_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(510148352))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(511721280))))[name = string("model_model_layers_5_self_attn_k_proj_weight_to_fp16_quantized")]; + tensor linear_36_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_5_self_attn_k_proj_weight_to_fp16_quantized, x = hidden_states_157_cast_fp16)[name = string("linear_36_cast_fp16")]; + tensor model_model_layers_5_self_attn_v_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(511917952))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(513490880))))[name = string("model_model_layers_5_self_attn_v_proj_weight_to_fp16_quantized")]; + tensor linear_37_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_5_self_attn_v_proj_weight_to_fp16_quantized, x = hidden_states_157_cast_fp16)[name = string("linear_37_cast_fp16")]; + tensor concat_95x = const()[name = string("concat_95x"), val = tensor([1, -1, 24, 128])]; + tensor var_1124_cast_fp16 = reshape(shape = concat_95x, x = linear_35_cast_fp16)[name = string("op_1124_cast_fp16")]; + tensor q_11_perm_0 = const()[name = string("q_11_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_96x = const()[name = string("concat_96x"), val = tensor([1, -1, 8, 128])]; + tensor var_1127_cast_fp16 = reshape(shape = concat_96x, x = linear_36_cast_fp16)[name = string("op_1127_cast_fp16")]; + tensor k_11_perm_0 = const()[name = string("k_11_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_97x = const()[name = string("concat_97x"), val = tensor([1, -1, 8, 128])]; + tensor var_1130_cast_fp16 = reshape(shape = concat_97x, x = linear_37_cast_fp16)[name = string("op_1130_cast_fp16")]; + tensor v_state_11_perm_0 = const()[name = string("v_state_11_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor q_11_cast_fp16 = transpose(perm = q_11_perm_0, x = var_1124_cast_fp16)[name = string("transpose_91")]; + tensor var_1134_cast_fp16 = mul(x = q_11_cast_fp16, y = cos_7_cast_fp16)[name = string("op_1134_cast_fp16")]; + tensor x1_21_begin_0 = const()[name = string("x1_21_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_21_end_0 = const()[name = string("x1_21_end_0"), val = tensor([1, 24, 0, 64])]; + tensor x1_21_end_mask_0 = const()[name = string("x1_21_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_21_cast_fp16 = slice_by_index(begin = x1_21_begin_0, end = x1_21_end_0, end_mask = x1_21_end_mask_0, x = q_11_cast_fp16)[name = string("x1_21_cast_fp16")]; + tensor x2_21_begin_0 = const()[name = string("x2_21_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_21_end_0 = const()[name = string("x2_21_end_0"), val = tensor([1, 24, 0, 128])]; + tensor x2_21_end_mask_0 = const()[name = string("x2_21_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_21_cast_fp16 = slice_by_index(begin = x2_21_begin_0, end = x2_21_end_0, end_mask = x2_21_end_mask_0, x = q_11_cast_fp16)[name = string("x2_21_cast_fp16")]; + fp16 const_13_promoted_to_fp16 = const()[name = string("const_13_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_1145_cast_fp16 = mul(x = x2_21_cast_fp16, y = const_13_promoted_to_fp16)[name = string("op_1145_cast_fp16")]; + bool var_1147_interleave_0 = const()[name = string("op_1147_interleave_0"), val = bool(false)]; + tensor var_1147_cast_fp16 = concat(axis = var_72, interleave = var_1147_interleave_0, values = (var_1145_cast_fp16, x1_21_cast_fp16))[name = string("op_1147_cast_fp16")]; + tensor var_1148_cast_fp16 = mul(x = var_1147_cast_fp16, y = sin_7_cast_fp16)[name = string("op_1148_cast_fp16")]; + tensor query_states_23_cast_fp16 = add(x = var_1134_cast_fp16, y = var_1148_cast_fp16)[name = string("query_states_23_cast_fp16")]; + tensor k_11_cast_fp16 = transpose(perm = k_11_perm_0, x = var_1127_cast_fp16)[name = string("transpose_90")]; + tensor var_1150_cast_fp16 = mul(x = k_11_cast_fp16, y = cos_7_cast_fp16)[name = string("op_1150_cast_fp16")]; + tensor x1_23_begin_0 = const()[name = string("x1_23_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_23_end_0 = const()[name = string("x1_23_end_0"), val = tensor([1, 8, 0, 64])]; + tensor x1_23_end_mask_0 = const()[name = string("x1_23_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_23_cast_fp16 = slice_by_index(begin = x1_23_begin_0, end = x1_23_end_0, end_mask = x1_23_end_mask_0, x = k_11_cast_fp16)[name = string("x1_23_cast_fp16")]; + tensor x2_23_begin_0 = const()[name = string("x2_23_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_23_end_0 = const()[name = string("x2_23_end_0"), val = tensor([1, 8, 0, 128])]; + tensor x2_23_end_mask_0 = const()[name = string("x2_23_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_23_cast_fp16 = slice_by_index(begin = x2_23_begin_0, end = x2_23_end_0, end_mask = x2_23_end_mask_0, x = k_11_cast_fp16)[name = string("x2_23_cast_fp16")]; + fp16 const_14_promoted_to_fp16 = const()[name = string("const_14_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_1161_cast_fp16 = mul(x = x2_23_cast_fp16, y = const_14_promoted_to_fp16)[name = string("op_1161_cast_fp16")]; + bool var_1163_interleave_0 = const()[name = string("op_1163_interleave_0"), val = bool(false)]; + tensor var_1163_cast_fp16 = concat(axis = var_72, interleave = var_1163_interleave_0, values = (var_1161_cast_fp16, x1_23_cast_fp16))[name = string("op_1163_cast_fp16")]; + tensor var_1164_cast_fp16 = mul(x = var_1163_cast_fp16, y = sin_7_cast_fp16)[name = string("op_1164_cast_fp16")]; + tensor k_state_11_cast_fp16 = add(x = var_1150_cast_fp16, y = var_1164_cast_fp16)[name = string("k_state_11_cast_fp16")]; + tensor expand_dims_60 = const()[name = string("expand_dims_60"), val = tensor([0])]; + tensor expand_dims_61 = const()[name = string("expand_dims_61"), val = tensor([0])]; + tensor expand_dims_63 = const()[name = string("expand_dims_63"), val = tensor([0])]; + tensor concat_100_values0_0 = const()[name = string("concat_100_values0_0"), val = tensor([5])]; + int32 concat_100_axis_0 = const()[name = string("concat_100_axis_0"), val = int32(0)]; + bool concat_100_interleave_0 = const()[name = string("concat_100_interleave_0"), val = bool(false)]; + tensor concat_100 = concat(axis = concat_100_axis_0, interleave = concat_100_interleave_0, values = (concat_100_values0_0, expand_dims_60, expand_dims_61, expand_dims_2, expand_dims_63))[name = string("concat_100")]; + tensor key_cache_internal_tensor_assign_6_stride_0 = const()[name = string("key_cache_internal_tensor_assign_6_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor key_cache_internal_tensor_assign_6_begin_mask_0 = const()[name = string("key_cache_internal_tensor_assign_6_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_6_end_mask_0 = const()[name = string("key_cache_internal_tensor_assign_6_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor key_cache_internal_tensor_assign_6_squeeze_mask_0 = const()[name = string("key_cache_internal_tensor_assign_6_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_6_cast_fp16 = slice_update(begin = concat_100, begin_mask = key_cache_internal_tensor_assign_6_begin_mask_0, end = concat_6, end_mask = key_cache_internal_tensor_assign_6_end_mask_0, squeeze_mask = key_cache_internal_tensor_assign_6_squeeze_mask_0, stride = key_cache_internal_tensor_assign_6_stride_0, update = k_state_11_cast_fp16, x = coreml_update_state_64)[name = string("key_cache_internal_tensor_assign_6_cast_fp16")]; + write_state(data = key_cache_internal_tensor_assign_6_cast_fp16, input = key_cache)[name = string("coreml_update_state_66_write_state")]; + tensor coreml_update_state_66 = read_state(input = key_cache)[name = string("coreml_update_state_66")]; + tensor value_cache_internal_tensor_assign_6_stride_0 = const()[name = string("value_cache_internal_tensor_assign_6_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor value_cache_internal_tensor_assign_6_begin_mask_0 = const()[name = string("value_cache_internal_tensor_assign_6_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor value_cache_internal_tensor_assign_6_end_mask_0 = const()[name = string("value_cache_internal_tensor_assign_6_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor value_cache_internal_tensor_assign_6_squeeze_mask_0 = const()[name = string("value_cache_internal_tensor_assign_6_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor v_state_11_cast_fp16 = transpose(perm = v_state_11_perm_0, x = var_1130_cast_fp16)[name = string("transpose_89")]; + tensor value_cache_internal_tensor_assign_6_cast_fp16 = slice_update(begin = concat_100, begin_mask = value_cache_internal_tensor_assign_6_begin_mask_0, end = concat_6, end_mask = value_cache_internal_tensor_assign_6_end_mask_0, squeeze_mask = value_cache_internal_tensor_assign_6_squeeze_mask_0, stride = value_cache_internal_tensor_assign_6_stride_0, update = v_state_11_cast_fp16, x = coreml_update_state_65)[name = string("value_cache_internal_tensor_assign_6_cast_fp16")]; + write_state(data = value_cache_internal_tensor_assign_6_cast_fp16, input = value_cache)[name = string("coreml_update_state_67_write_state")]; + tensor coreml_update_state_67 = read_state(input = value_cache)[name = string("coreml_update_state_67")]; + tensor var_1187_begin_0 = const()[name = string("op_1187_begin_0"), val = tensor([5, 0, 0, 0, 0])]; + tensor var_1187_end_0 = const()[name = string("op_1187_end_0"), val = tensor([6, 1, 8, 2048, 128])]; + tensor var_1187_end_mask_0 = const()[name = string("op_1187_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_1187_squeeze_mask_0 = const()[name = string("op_1187_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_1187_cast_fp16 = slice_by_index(begin = var_1187_begin_0, end = var_1187_end_0, end_mask = var_1187_end_mask_0, squeeze_mask = var_1187_squeeze_mask_0, x = coreml_update_state_66)[name = string("op_1187_cast_fp16")]; + tensor var_1190_begin_0 = const()[name = string("op_1190_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_1190_end_mask_0 = const()[name = string("op_1190_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_1190_cast_fp16 = slice_by_index(begin = var_1190_begin_0, end = concat_11, end_mask = var_1190_end_mask_0, x = var_1187_cast_fp16)[name = string("op_1190_cast_fp16")]; + tensor var_1192_begin_0 = const()[name = string("op_1192_begin_0"), val = tensor([5, 0, 0, 0, 0])]; + tensor var_1192_end_0 = const()[name = string("op_1192_end_0"), val = tensor([6, 1, 8, 2048, 128])]; + tensor var_1192_end_mask_0 = const()[name = string("op_1192_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_1192_squeeze_mask_0 = const()[name = string("op_1192_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_1192_cast_fp16 = slice_by_index(begin = var_1192_begin_0, end = var_1192_end_0, end_mask = var_1192_end_mask_0, squeeze_mask = var_1192_squeeze_mask_0, x = coreml_update_state_67)[name = string("op_1192_cast_fp16")]; + tensor var_1195_begin_0 = const()[name = string("op_1195_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_1195_end_mask_0 = const()[name = string("op_1195_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_1195_cast_fp16 = slice_by_index(begin = var_1195_begin_0, end = concat_11, end_mask = var_1195_end_mask_0, x = var_1192_cast_fp16)[name = string("op_1195_cast_fp16")]; + tensor var_1197_shape_cast_fp16 = shape(x = var_1190_cast_fp16)[name = string("op_1197_shape_cast_fp16")]; + int32 gather_103 = const()[name = string("gather_103"), val = int32(1)]; + int32 gather_104 = const()[name = string("gather_104"), val = int32(8)]; + int32 gather_105_axis_0 = const()[name = string("gather_105_axis_0"), val = int32(0)]; + int32 gather_105_batch_dims_0 = const()[name = string("gather_105_batch_dims_0"), val = int32(0)]; + bool gather_105_validate_indices_0 = const()[name = string("gather_105_validate_indices_0"), val = bool(false)]; + string var_1197_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_1197_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_105_to_uint16 = const()[name = string("select_105_to_uint16"), val = uint16(2)]; + tensor var_1197_shape_cast_fp16_to_uint16 = cast(dtype = var_1197_shape_cast_fp16_to_uint16_dtype_0, x = var_1197_shape_cast_fp16)[name = string("cast_182")]; + uint16 gather_105_cast_uint16 = gather(axis = gather_105_axis_0, batch_dims = gather_105_batch_dims_0, indices = select_105_to_uint16, validate_indices = gather_105_validate_indices_0, x = var_1197_shape_cast_fp16_to_uint16)[name = string("gather_105_cast_uint16")]; + string gather_105_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_105_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_106 = const()[name = string("gather_106"), val = int32(128)]; + tensor var_1204_axes_0 = const()[name = string("op_1204_axes_0"), val = tensor([2])]; + tensor var_1204_cast_fp16 = expand_dims(axes = var_1204_axes_0, x = var_1190_cast_fp16)[name = string("op_1204_cast_fp16")]; + tensor shape_117_cast_fp16 = shape(x = var_1204_cast_fp16)[name = string("shape_117_cast_fp16")]; + int32 concat_108_axis_0 = const()[name = string("concat_108_axis_0"), val = int32(0)]; + bool concat_108_interleave_0 = const()[name = string("concat_108_interleave_0"), val = bool(false)]; + int32 gather_105_cast_uint16_to_int32 = cast(dtype = gather_105_cast_uint16_to_int32_dtype_0, x = gather_105_cast_uint16)[name = string("cast_181")]; + tensor concat_108 = concat(axis = concat_108_axis_0, interleave = concat_108_interleave_0, values = (gather_103, gather_104, var_81, gather_105_cast_uint16_to_int32, gather_106))[name = string("concat_108")]; + tensor real_div_10 = real_div(x = concat_108, y = shape_117_cast_fp16)[name = string("real_div_10")]; + tensor hidden_states_161_cast_fp16 = tile(reps = real_div_10, x = var_1204_cast_fp16)[name = string("hidden_states_161_cast_fp16")]; + tensor concat_109x = const()[name = string("concat_109x"), val = tensor([1, 24, -1, 128])]; + tensor key_states_23_cast_fp16 = reshape(shape = concat_109x, x = hidden_states_161_cast_fp16)[name = string("key_states_23_cast_fp16")]; + tensor var_1214_shape_cast_fp16 = shape(x = var_1195_cast_fp16)[name = string("op_1214_shape_cast_fp16")]; + int32 gather_107 = const()[name = string("gather_107"), val = int32(1)]; + int32 gather_108 = const()[name = string("gather_108"), val = int32(8)]; + int32 gather_109_axis_0 = const()[name = string("gather_109_axis_0"), val = int32(0)]; + int32 gather_109_batch_dims_0 = const()[name = string("gather_109_batch_dims_0"), val = int32(0)]; + bool gather_109_validate_indices_0 = const()[name = string("gather_109_validate_indices_0"), val = bool(false)]; + string var_1214_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_1214_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_109_to_uint16 = const()[name = string("select_109_to_uint16"), val = uint16(2)]; + tensor var_1214_shape_cast_fp16_to_uint16 = cast(dtype = var_1214_shape_cast_fp16_to_uint16_dtype_0, x = var_1214_shape_cast_fp16)[name = string("cast_180")]; + uint16 gather_109_cast_uint16 = gather(axis = gather_109_axis_0, batch_dims = gather_109_batch_dims_0, indices = select_109_to_uint16, validate_indices = gather_109_validate_indices_0, x = var_1214_shape_cast_fp16_to_uint16)[name = string("gather_109_cast_uint16")]; + string gather_109_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_109_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_110 = const()[name = string("gather_110"), val = int32(128)]; + tensor var_1221_axes_0 = const()[name = string("op_1221_axes_0"), val = tensor([2])]; + tensor var_1221_cast_fp16 = expand_dims(axes = var_1221_axes_0, x = var_1195_cast_fp16)[name = string("op_1221_cast_fp16")]; + tensor shape_122_cast_fp16 = shape(x = var_1221_cast_fp16)[name = string("shape_122_cast_fp16")]; + int32 concat_110_axis_0 = const()[name = string("concat_110_axis_0"), val = int32(0)]; + bool concat_110_interleave_0 = const()[name = string("concat_110_interleave_0"), val = bool(false)]; + int32 gather_109_cast_uint16_to_int32 = cast(dtype = gather_109_cast_uint16_to_int32_dtype_0, x = gather_109_cast_uint16)[name = string("cast_179")]; + tensor concat_110 = concat(axis = concat_110_axis_0, interleave = concat_110_interleave_0, values = (gather_107, gather_108, var_81, gather_109_cast_uint16_to_int32, gather_110))[name = string("concat_110")]; + tensor real_div_11 = real_div(x = concat_110, y = shape_122_cast_fp16)[name = string("real_div_11")]; + tensor hidden_states_165_cast_fp16 = tile(reps = real_div_11, x = var_1221_cast_fp16)[name = string("hidden_states_165_cast_fp16")]; + tensor concat_111x = const()[name = string("concat_111x"), val = tensor([1, 24, -1, 128])]; + tensor value_states_23_cast_fp16 = reshape(shape = concat_111x, x = hidden_states_165_cast_fp16)[name = string("value_states_23_cast_fp16")]; + tensor var_1231_shape_cast_fp16 = shape(x = key_states_23_cast_fp16)[name = string("op_1231_shape_cast_fp16")]; + int32 gather_111_axis_0 = const()[name = string("gather_111_axis_0"), val = int32(0)]; + int32 gather_111_batch_dims_0 = const()[name = string("gather_111_batch_dims_0"), val = int32(0)]; + bool gather_111_validate_indices_0 = const()[name = string("gather_111_validate_indices_0"), val = bool(false)]; + string var_1231_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_1231_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_111_to_uint16 = const()[name = string("select_111_to_uint16"), val = uint16(2)]; + tensor var_1231_shape_cast_fp16_to_uint16 = cast(dtype = var_1231_shape_cast_fp16_to_uint16_dtype_0, x = var_1231_shape_cast_fp16)[name = string("cast_178")]; + uint16 gather_111_cast_uint16 = gather(axis = gather_111_axis_0, batch_dims = gather_111_batch_dims_0, indices = select_111_to_uint16, validate_indices = gather_111_validate_indices_0, x = var_1231_shape_cast_fp16_to_uint16)[name = string("gather_111_cast_uint16")]; + string gather_111_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_111_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 concat_112_values0_0 = const()[name = string("concat_112_values0_0"), val = int32(1)]; + int32 concat_112_values1_0 = const()[name = string("concat_112_values1_0"), val = int32(1)]; + int32 concat_112_values2_0 = const()[name = string("concat_112_values2_0"), val = int32(0)]; + int32 concat_112_axis_0 = const()[name = string("concat_112_axis_0"), val = int32(0)]; + bool concat_112_interleave_0 = const()[name = string("concat_112_interleave_0"), val = bool(false)]; + int32 gather_111_cast_uint16_to_int32 = cast(dtype = gather_111_cast_uint16_to_int32_dtype_0, x = gather_111_cast_uint16)[name = string("cast_177")]; + tensor concat_112 = concat(axis = concat_112_axis_0, interleave = concat_112_interleave_0, values = (concat_112_values0_0, concat_112_values1_0, concat_112_values2_0, gather_111_cast_uint16_to_int32))[name = string("concat_112")]; + tensor causal_mask_13_begin_0 = const()[name = string("causal_mask_13_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor causal_mask_13_end_mask_0 = const()[name = string("causal_mask_13_end_mask_0"), val = tensor([true, true, true, false])]; + tensor causal_mask_13_cast_fp16 = slice_by_index(begin = causal_mask_13_begin_0, end = concat_112, end_mask = causal_mask_13_end_mask_0, x = causal_mask)[name = string("causal_mask_13_cast_fp16")]; + tensor attn_output_21_cast_fp16 = scaled_dot_product_attention(attn_mask = causal_mask_13_cast_fp16, key = key_states_23_cast_fp16, query = query_states_23_cast_fp16, value = value_states_23_cast_fp16)[name = string("attn_output_21_cast_fp16")]; + tensor var_1237_perm_0 = const()[name = string("op_1237_perm_0"), val = tensor([0, 2, 1, 3])]; + int32 concat_113_axis_0 = const()[name = string("concat_113_axis_0"), val = int32(0)]; + bool concat_113_interleave_0 = const()[name = string("concat_113_interleave_0"), val = bool(false)]; + int32 gather_95_cast_uint16_to_int32 = cast(dtype = gather_95_cast_uint16_to_int32_dtype_0, x = gather_95_cast_uint16)[name = string("cast_176")]; + tensor concat_113 = concat(axis = concat_113_axis_0, interleave = concat_113_interleave_0, values = (gather_94, gather_95_cast_uint16_to_int32, var_72))[name = string("concat_113")]; + tensor var_1237_cast_fp16 = transpose(perm = var_1237_perm_0, x = attn_output_21_cast_fp16)[name = string("transpose_88")]; + tensor input_41_cast_fp16 = reshape(shape = concat_113, x = var_1237_cast_fp16)[name = string("input_41_cast_fp16")]; + tensor model_model_layers_5_self_attn_o_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(513687552))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(518406208))))[name = string("model_model_layers_5_self_attn_o_proj_weight_to_fp16_quantized")]; + tensor linear_38_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_5_self_attn_o_proj_weight_to_fp16_quantized, x = input_41_cast_fp16)[name = string("linear_38_cast_fp16")]; + tensor hidden_states_169_cast_fp16 = add(x = hidden_states_149_cast_fp16, y = linear_38_cast_fp16)[name = string("hidden_states_169_cast_fp16")]; + fp16 var_78_promoted_11_to_fp16 = const()[name = string("op_78_promoted_11_to_fp16"), val = fp16(0x1p+1)]; + tensor var_1246_cast_fp16 = pow(x = hidden_states_169_cast_fp16, y = var_78_promoted_11_to_fp16)[name = string("op_1246_cast_fp16")]; + tensor variance_23_axes_0 = const()[name = string("variance_23_axes_0"), val = tensor([-1])]; + bool variance_23_keep_dims_0 = const()[name = string("variance_23_keep_dims_0"), val = bool(true)]; + tensor variance_23_cast_fp16 = reduce_mean(axes = variance_23_axes_0, keep_dims = variance_23_keep_dims_0, x = var_1246_cast_fp16)[name = string("variance_23_cast_fp16")]; + fp16 var_1249_to_fp16 = const()[name = string("op_1249_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_1250_cast_fp16 = add(x = variance_23_cast_fp16, y = var_1249_to_fp16)[name = string("op_1250_cast_fp16")]; + fp32 var_1251_epsilon_0 = const()[name = string("op_1251_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_1251_cast_fp16 = rsqrt(epsilon = var_1251_epsilon_0, x = var_1250_cast_fp16)[name = string("op_1251_cast_fp16")]; + tensor hidden_states_173_cast_fp16 = mul(x = hidden_states_169_cast_fp16, y = var_1251_cast_fp16)[name = string("hidden_states_173_cast_fp16")]; + tensor model_model_layers_5_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_5_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(518996096)))]; + tensor input_43_cast_fp16 = mul(x = model_model_layers_5_post_attention_layernorm_weight_to_fp16, y = hidden_states_173_cast_fp16)[name = string("input_43_cast_fp16")]; + tensor model_model_layers_5_mlp_gate_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(519002304))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(531585280))))[name = string("model_model_layers_5_mlp_gate_proj_weight_to_fp16_quantized")]; + tensor linear_39_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_5_mlp_gate_proj_weight_to_fp16_quantized, x = input_43_cast_fp16)[name = string("linear_39_cast_fp16")]; + tensor var_1263_cast_fp16 = silu(x = linear_39_cast_fp16)[name = string("op_1263_cast_fp16")]; + tensor model_model_layers_5_mlp_up_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(533158208))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(545741184))))[name = string("model_model_layers_5_mlp_up_proj_weight_to_fp16_quantized")]; + tensor linear_40_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_5_mlp_up_proj_weight_to_fp16_quantized, x = input_43_cast_fp16)[name = string("linear_40_cast_fp16")]; + tensor input_47_cast_fp16 = mul(x = var_1263_cast_fp16, y = linear_40_cast_fp16)[name = string("input_47_cast_fp16")]; + tensor model_model_layers_5_mlp_down_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(547314112))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(559897088))))[name = string("model_model_layers_5_mlp_down_proj_weight_to_fp16_quantized")]; + tensor linear_41_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_5_mlp_down_proj_weight_to_fp16_quantized, x = input_47_cast_fp16)[name = string("linear_41_cast_fp16")]; + tensor hidden_states_179_cast_fp16 = add(x = hidden_states_169_cast_fp16, y = linear_41_cast_fp16)[name = string("hidden_states_179_cast_fp16")]; + fp16 var_78_promoted_12_to_fp16 = const()[name = string("op_78_promoted_12_to_fp16"), val = fp16(0x1p+1)]; + tensor var_1276_cast_fp16 = pow(x = hidden_states_179_cast_fp16, y = var_78_promoted_12_to_fp16)[name = string("op_1276_cast_fp16")]; + tensor variance_25_axes_0 = const()[name = string("variance_25_axes_0"), val = tensor([-1])]; + bool variance_25_keep_dims_0 = const()[name = string("variance_25_keep_dims_0"), val = bool(true)]; + tensor variance_25_cast_fp16 = reduce_mean(axes = variance_25_axes_0, keep_dims = variance_25_keep_dims_0, x = var_1276_cast_fp16)[name = string("variance_25_cast_fp16")]; + fp16 var_1279_to_fp16 = const()[name = string("op_1279_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_1280_cast_fp16 = add(x = variance_25_cast_fp16, y = var_1279_to_fp16)[name = string("op_1280_cast_fp16")]; + fp32 var_1281_epsilon_0 = const()[name = string("op_1281_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_1281_cast_fp16 = rsqrt(epsilon = var_1281_epsilon_0, x = var_1280_cast_fp16)[name = string("op_1281_cast_fp16")]; + tensor hidden_states_183_cast_fp16 = mul(x = hidden_states_179_cast_fp16, y = var_1281_cast_fp16)[name = string("hidden_states_183_cast_fp16")]; + tensor model_model_layers_6_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_6_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(561470016)))]; + tensor hidden_states_187_cast_fp16 = mul(x = model_model_layers_6_input_layernorm_weight_to_fp16, y = hidden_states_183_cast_fp16)[name = string("hidden_states_187_cast_fp16")]; + tensor var_1292_shape_cast_fp16 = shape(x = hidden_states_187_cast_fp16)[name = string("op_1292_shape_cast_fp16")]; + int32 gather_112 = const()[name = string("gather_112"), val = int32(1)]; + int32 gather_113_axis_0 = const()[name = string("gather_113_axis_0"), val = int32(0)]; + int32 gather_113_batch_dims_0 = const()[name = string("gather_113_batch_dims_0"), val = int32(0)]; + bool gather_113_validate_indices_0 = const()[name = string("gather_113_validate_indices_0"), val = bool(false)]; + string var_1292_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_1292_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_113_to_uint16 = const()[name = string("select_113_to_uint16"), val = uint16(1)]; + tensor var_1292_shape_cast_fp16_to_uint16 = cast(dtype = var_1292_shape_cast_fp16_to_uint16_dtype_0, x = var_1292_shape_cast_fp16)[name = string("cast_175")]; + uint16 gather_113_cast_uint16 = gather(axis = gather_113_axis_0, batch_dims = gather_113_batch_dims_0, indices = select_113_to_uint16, validate_indices = gather_113_validate_indices_0, x = var_1292_shape_cast_fp16_to_uint16)[name = string("gather_113_cast_uint16")]; + string gather_113_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_113_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor model_model_layers_6_self_attn_q_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(561476224))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(566194880))))[name = string("model_model_layers_6_self_attn_q_proj_weight_to_fp16_quantized")]; + tensor linear_42_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_6_self_attn_q_proj_weight_to_fp16_quantized, x = hidden_states_187_cast_fp16)[name = string("linear_42_cast_fp16")]; + tensor model_model_layers_6_self_attn_k_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(566784768))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(568357696))))[name = string("model_model_layers_6_self_attn_k_proj_weight_to_fp16_quantized")]; + tensor linear_43_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_6_self_attn_k_proj_weight_to_fp16_quantized, x = hidden_states_187_cast_fp16)[name = string("linear_43_cast_fp16")]; + tensor model_model_layers_6_self_attn_v_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(568554368))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(570127296))))[name = string("model_model_layers_6_self_attn_v_proj_weight_to_fp16_quantized")]; + tensor linear_44_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_6_self_attn_v_proj_weight_to_fp16_quantized, x = hidden_states_187_cast_fp16)[name = string("linear_44_cast_fp16")]; + tensor concat_114x = const()[name = string("concat_114x"), val = tensor([1, -1, 24, 128])]; + tensor var_1301_cast_fp16 = reshape(shape = concat_114x, x = linear_42_cast_fp16)[name = string("op_1301_cast_fp16")]; + tensor q_13_perm_0 = const()[name = string("q_13_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_115x = const()[name = string("concat_115x"), val = tensor([1, -1, 8, 128])]; + tensor var_1304_cast_fp16 = reshape(shape = concat_115x, x = linear_43_cast_fp16)[name = string("op_1304_cast_fp16")]; + tensor k_13_perm_0 = const()[name = string("k_13_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_116x = const()[name = string("concat_116x"), val = tensor([1, -1, 8, 128])]; + tensor var_1307_cast_fp16 = reshape(shape = concat_116x, x = linear_44_cast_fp16)[name = string("op_1307_cast_fp16")]; + tensor v_state_13_perm_0 = const()[name = string("v_state_13_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor q_13_cast_fp16 = transpose(perm = q_13_perm_0, x = var_1301_cast_fp16)[name = string("transpose_87")]; + tensor var_1311_cast_fp16 = mul(x = q_13_cast_fp16, y = cos_7_cast_fp16)[name = string("op_1311_cast_fp16")]; + tensor x1_25_begin_0 = const()[name = string("x1_25_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_25_end_0 = const()[name = string("x1_25_end_0"), val = tensor([1, 24, 0, 64])]; + tensor x1_25_end_mask_0 = const()[name = string("x1_25_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_25_cast_fp16 = slice_by_index(begin = x1_25_begin_0, end = x1_25_end_0, end_mask = x1_25_end_mask_0, x = q_13_cast_fp16)[name = string("x1_25_cast_fp16")]; + tensor x2_25_begin_0 = const()[name = string("x2_25_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_25_end_0 = const()[name = string("x2_25_end_0"), val = tensor([1, 24, 0, 128])]; + tensor x2_25_end_mask_0 = const()[name = string("x2_25_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_25_cast_fp16 = slice_by_index(begin = x2_25_begin_0, end = x2_25_end_0, end_mask = x2_25_end_mask_0, x = q_13_cast_fp16)[name = string("x2_25_cast_fp16")]; + fp16 const_15_promoted_to_fp16 = const()[name = string("const_15_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_1322_cast_fp16 = mul(x = x2_25_cast_fp16, y = const_15_promoted_to_fp16)[name = string("op_1322_cast_fp16")]; + bool var_1324_interleave_0 = const()[name = string("op_1324_interleave_0"), val = bool(false)]; + tensor var_1324_cast_fp16 = concat(axis = var_72, interleave = var_1324_interleave_0, values = (var_1322_cast_fp16, x1_25_cast_fp16))[name = string("op_1324_cast_fp16")]; + tensor var_1325_cast_fp16 = mul(x = var_1324_cast_fp16, y = sin_7_cast_fp16)[name = string("op_1325_cast_fp16")]; + tensor query_states_27_cast_fp16 = add(x = var_1311_cast_fp16, y = var_1325_cast_fp16)[name = string("query_states_27_cast_fp16")]; + tensor k_13_cast_fp16 = transpose(perm = k_13_perm_0, x = var_1304_cast_fp16)[name = string("transpose_86")]; + tensor var_1327_cast_fp16 = mul(x = k_13_cast_fp16, y = cos_7_cast_fp16)[name = string("op_1327_cast_fp16")]; + tensor x1_27_begin_0 = const()[name = string("x1_27_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_27_end_0 = const()[name = string("x1_27_end_0"), val = tensor([1, 8, 0, 64])]; + tensor x1_27_end_mask_0 = const()[name = string("x1_27_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_27_cast_fp16 = slice_by_index(begin = x1_27_begin_0, end = x1_27_end_0, end_mask = x1_27_end_mask_0, x = k_13_cast_fp16)[name = string("x1_27_cast_fp16")]; + tensor x2_27_begin_0 = const()[name = string("x2_27_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_27_end_0 = const()[name = string("x2_27_end_0"), val = tensor([1, 8, 0, 128])]; + tensor x2_27_end_mask_0 = const()[name = string("x2_27_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_27_cast_fp16 = slice_by_index(begin = x2_27_begin_0, end = x2_27_end_0, end_mask = x2_27_end_mask_0, x = k_13_cast_fp16)[name = string("x2_27_cast_fp16")]; + fp16 const_16_promoted_to_fp16 = const()[name = string("const_16_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_1338_cast_fp16 = mul(x = x2_27_cast_fp16, y = const_16_promoted_to_fp16)[name = string("op_1338_cast_fp16")]; + bool var_1340_interleave_0 = const()[name = string("op_1340_interleave_0"), val = bool(false)]; + tensor var_1340_cast_fp16 = concat(axis = var_72, interleave = var_1340_interleave_0, values = (var_1338_cast_fp16, x1_27_cast_fp16))[name = string("op_1340_cast_fp16")]; + tensor var_1341_cast_fp16 = mul(x = var_1340_cast_fp16, y = sin_7_cast_fp16)[name = string("op_1341_cast_fp16")]; + tensor k_state_13_cast_fp16 = add(x = var_1327_cast_fp16, y = var_1341_cast_fp16)[name = string("k_state_13_cast_fp16")]; + tensor expand_dims_72 = const()[name = string("expand_dims_72"), val = tensor([0])]; + tensor expand_dims_73 = const()[name = string("expand_dims_73"), val = tensor([0])]; + tensor expand_dims_75 = const()[name = string("expand_dims_75"), val = tensor([0])]; + tensor concat_119_values0_0 = const()[name = string("concat_119_values0_0"), val = tensor([6])]; + int32 concat_119_axis_0 = const()[name = string("concat_119_axis_0"), val = int32(0)]; + bool concat_119_interleave_0 = const()[name = string("concat_119_interleave_0"), val = bool(false)]; + tensor concat_119 = concat(axis = concat_119_axis_0, interleave = concat_119_interleave_0, values = (concat_119_values0_0, expand_dims_72, expand_dims_73, expand_dims_2, expand_dims_75))[name = string("concat_119")]; + tensor key_cache_internal_tensor_assign_7_stride_0 = const()[name = string("key_cache_internal_tensor_assign_7_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor key_cache_internal_tensor_assign_7_begin_mask_0 = const()[name = string("key_cache_internal_tensor_assign_7_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_7_end_mask_0 = const()[name = string("key_cache_internal_tensor_assign_7_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor key_cache_internal_tensor_assign_7_squeeze_mask_0 = const()[name = string("key_cache_internal_tensor_assign_7_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_7_cast_fp16 = slice_update(begin = concat_119, begin_mask = key_cache_internal_tensor_assign_7_begin_mask_0, end = concat_6, end_mask = key_cache_internal_tensor_assign_7_end_mask_0, squeeze_mask = key_cache_internal_tensor_assign_7_squeeze_mask_0, stride = key_cache_internal_tensor_assign_7_stride_0, update = k_state_13_cast_fp16, x = coreml_update_state_66)[name = string("key_cache_internal_tensor_assign_7_cast_fp16")]; + write_state(data = key_cache_internal_tensor_assign_7_cast_fp16, input = key_cache)[name = string("coreml_update_state_68_write_state")]; + tensor coreml_update_state_68 = read_state(input = key_cache)[name = string("coreml_update_state_68")]; + tensor value_cache_internal_tensor_assign_7_stride_0 = const()[name = string("value_cache_internal_tensor_assign_7_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor value_cache_internal_tensor_assign_7_begin_mask_0 = const()[name = string("value_cache_internal_tensor_assign_7_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor value_cache_internal_tensor_assign_7_end_mask_0 = const()[name = string("value_cache_internal_tensor_assign_7_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor value_cache_internal_tensor_assign_7_squeeze_mask_0 = const()[name = string("value_cache_internal_tensor_assign_7_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor v_state_13_cast_fp16 = transpose(perm = v_state_13_perm_0, x = var_1307_cast_fp16)[name = string("transpose_85")]; + tensor value_cache_internal_tensor_assign_7_cast_fp16 = slice_update(begin = concat_119, begin_mask = value_cache_internal_tensor_assign_7_begin_mask_0, end = concat_6, end_mask = value_cache_internal_tensor_assign_7_end_mask_0, squeeze_mask = value_cache_internal_tensor_assign_7_squeeze_mask_0, stride = value_cache_internal_tensor_assign_7_stride_0, update = v_state_13_cast_fp16, x = coreml_update_state_67)[name = string("value_cache_internal_tensor_assign_7_cast_fp16")]; + write_state(data = value_cache_internal_tensor_assign_7_cast_fp16, input = value_cache)[name = string("coreml_update_state_69_write_state")]; + tensor coreml_update_state_69 = read_state(input = value_cache)[name = string("coreml_update_state_69")]; + tensor var_1364_begin_0 = const()[name = string("op_1364_begin_0"), val = tensor([6, 0, 0, 0, 0])]; + tensor var_1364_end_0 = const()[name = string("op_1364_end_0"), val = tensor([7, 1, 8, 2048, 128])]; + tensor var_1364_end_mask_0 = const()[name = string("op_1364_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_1364_squeeze_mask_0 = const()[name = string("op_1364_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_1364_cast_fp16 = slice_by_index(begin = var_1364_begin_0, end = var_1364_end_0, end_mask = var_1364_end_mask_0, squeeze_mask = var_1364_squeeze_mask_0, x = coreml_update_state_68)[name = string("op_1364_cast_fp16")]; + tensor var_1367_begin_0 = const()[name = string("op_1367_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_1367_end_mask_0 = const()[name = string("op_1367_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_1367_cast_fp16 = slice_by_index(begin = var_1367_begin_0, end = concat_11, end_mask = var_1367_end_mask_0, x = var_1364_cast_fp16)[name = string("op_1367_cast_fp16")]; + tensor var_1369_begin_0 = const()[name = string("op_1369_begin_0"), val = tensor([6, 0, 0, 0, 0])]; + tensor var_1369_end_0 = const()[name = string("op_1369_end_0"), val = tensor([7, 1, 8, 2048, 128])]; + tensor var_1369_end_mask_0 = const()[name = string("op_1369_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_1369_squeeze_mask_0 = const()[name = string("op_1369_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_1369_cast_fp16 = slice_by_index(begin = var_1369_begin_0, end = var_1369_end_0, end_mask = var_1369_end_mask_0, squeeze_mask = var_1369_squeeze_mask_0, x = coreml_update_state_69)[name = string("op_1369_cast_fp16")]; + tensor var_1372_begin_0 = const()[name = string("op_1372_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_1372_end_mask_0 = const()[name = string("op_1372_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_1372_cast_fp16 = slice_by_index(begin = var_1372_begin_0, end = concat_11, end_mask = var_1372_end_mask_0, x = var_1369_cast_fp16)[name = string("op_1372_cast_fp16")]; + tensor var_1374_shape_cast_fp16 = shape(x = var_1367_cast_fp16)[name = string("op_1374_shape_cast_fp16")]; + int32 gather_121 = const()[name = string("gather_121"), val = int32(1)]; + int32 gather_122 = const()[name = string("gather_122"), val = int32(8)]; + int32 gather_123_axis_0 = const()[name = string("gather_123_axis_0"), val = int32(0)]; + int32 gather_123_batch_dims_0 = const()[name = string("gather_123_batch_dims_0"), val = int32(0)]; + bool gather_123_validate_indices_0 = const()[name = string("gather_123_validate_indices_0"), val = bool(false)]; + string var_1374_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_1374_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_123_to_uint16 = const()[name = string("select_123_to_uint16"), val = uint16(2)]; + tensor var_1374_shape_cast_fp16_to_uint16 = cast(dtype = var_1374_shape_cast_fp16_to_uint16_dtype_0, x = var_1374_shape_cast_fp16)[name = string("cast_174")]; + uint16 gather_123_cast_uint16 = gather(axis = gather_123_axis_0, batch_dims = gather_123_batch_dims_0, indices = select_123_to_uint16, validate_indices = gather_123_validate_indices_0, x = var_1374_shape_cast_fp16_to_uint16)[name = string("gather_123_cast_uint16")]; + string gather_123_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_123_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_124 = const()[name = string("gather_124"), val = int32(128)]; + tensor var_1381_axes_0 = const()[name = string("op_1381_axes_0"), val = tensor([2])]; + tensor var_1381_cast_fp16 = expand_dims(axes = var_1381_axes_0, x = var_1367_cast_fp16)[name = string("op_1381_cast_fp16")]; + tensor shape_137_cast_fp16 = shape(x = var_1381_cast_fp16)[name = string("shape_137_cast_fp16")]; + int32 concat_127_axis_0 = const()[name = string("concat_127_axis_0"), val = int32(0)]; + bool concat_127_interleave_0 = const()[name = string("concat_127_interleave_0"), val = bool(false)]; + int32 gather_123_cast_uint16_to_int32 = cast(dtype = gather_123_cast_uint16_to_int32_dtype_0, x = gather_123_cast_uint16)[name = string("cast_173")]; + tensor concat_127 = concat(axis = concat_127_axis_0, interleave = concat_127_interleave_0, values = (gather_121, gather_122, var_81, gather_123_cast_uint16_to_int32, gather_124))[name = string("concat_127")]; + tensor real_div_12 = real_div(x = concat_127, y = shape_137_cast_fp16)[name = string("real_div_12")]; + tensor hidden_states_191_cast_fp16 = tile(reps = real_div_12, x = var_1381_cast_fp16)[name = string("hidden_states_191_cast_fp16")]; + tensor concat_128x = const()[name = string("concat_128x"), val = tensor([1, 24, -1, 128])]; + tensor key_states_27_cast_fp16 = reshape(shape = concat_128x, x = hidden_states_191_cast_fp16)[name = string("key_states_27_cast_fp16")]; + tensor var_1391_shape_cast_fp16 = shape(x = var_1372_cast_fp16)[name = string("op_1391_shape_cast_fp16")]; + int32 gather_125 = const()[name = string("gather_125"), val = int32(1)]; + int32 gather_126 = const()[name = string("gather_126"), val = int32(8)]; + int32 gather_127_axis_0 = const()[name = string("gather_127_axis_0"), val = int32(0)]; + int32 gather_127_batch_dims_0 = const()[name = string("gather_127_batch_dims_0"), val = int32(0)]; + bool gather_127_validate_indices_0 = const()[name = string("gather_127_validate_indices_0"), val = bool(false)]; + string var_1391_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_1391_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_127_to_uint16 = const()[name = string("select_127_to_uint16"), val = uint16(2)]; + tensor var_1391_shape_cast_fp16_to_uint16 = cast(dtype = var_1391_shape_cast_fp16_to_uint16_dtype_0, x = var_1391_shape_cast_fp16)[name = string("cast_172")]; + uint16 gather_127_cast_uint16 = gather(axis = gather_127_axis_0, batch_dims = gather_127_batch_dims_0, indices = select_127_to_uint16, validate_indices = gather_127_validate_indices_0, x = var_1391_shape_cast_fp16_to_uint16)[name = string("gather_127_cast_uint16")]; + string gather_127_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_127_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_128 = const()[name = string("gather_128"), val = int32(128)]; + tensor var_1398_axes_0 = const()[name = string("op_1398_axes_0"), val = tensor([2])]; + tensor var_1398_cast_fp16 = expand_dims(axes = var_1398_axes_0, x = var_1372_cast_fp16)[name = string("op_1398_cast_fp16")]; + tensor shape_142_cast_fp16 = shape(x = var_1398_cast_fp16)[name = string("shape_142_cast_fp16")]; + int32 concat_129_axis_0 = const()[name = string("concat_129_axis_0"), val = int32(0)]; + bool concat_129_interleave_0 = const()[name = string("concat_129_interleave_0"), val = bool(false)]; + int32 gather_127_cast_uint16_to_int32 = cast(dtype = gather_127_cast_uint16_to_int32_dtype_0, x = gather_127_cast_uint16)[name = string("cast_171")]; + tensor concat_129 = concat(axis = concat_129_axis_0, interleave = concat_129_interleave_0, values = (gather_125, gather_126, var_81, gather_127_cast_uint16_to_int32, gather_128))[name = string("concat_129")]; + tensor real_div_13 = real_div(x = concat_129, y = shape_142_cast_fp16)[name = string("real_div_13")]; + tensor hidden_states_195_cast_fp16 = tile(reps = real_div_13, x = var_1398_cast_fp16)[name = string("hidden_states_195_cast_fp16")]; + tensor concat_130x = const()[name = string("concat_130x"), val = tensor([1, 24, -1, 128])]; + tensor value_states_27_cast_fp16 = reshape(shape = concat_130x, x = hidden_states_195_cast_fp16)[name = string("value_states_27_cast_fp16")]; + tensor var_1408_shape_cast_fp16 = shape(x = key_states_27_cast_fp16)[name = string("op_1408_shape_cast_fp16")]; + int32 gather_129_axis_0 = const()[name = string("gather_129_axis_0"), val = int32(0)]; + int32 gather_129_batch_dims_0 = const()[name = string("gather_129_batch_dims_0"), val = int32(0)]; + bool gather_129_validate_indices_0 = const()[name = string("gather_129_validate_indices_0"), val = bool(false)]; + string var_1408_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_1408_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_129_to_uint16 = const()[name = string("select_129_to_uint16"), val = uint16(2)]; + tensor var_1408_shape_cast_fp16_to_uint16 = cast(dtype = var_1408_shape_cast_fp16_to_uint16_dtype_0, x = var_1408_shape_cast_fp16)[name = string("cast_170")]; + uint16 gather_129_cast_uint16 = gather(axis = gather_129_axis_0, batch_dims = gather_129_batch_dims_0, indices = select_129_to_uint16, validate_indices = gather_129_validate_indices_0, x = var_1408_shape_cast_fp16_to_uint16)[name = string("gather_129_cast_uint16")]; + string gather_129_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_129_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 concat_131_values0_0 = const()[name = string("concat_131_values0_0"), val = int32(1)]; + int32 concat_131_values1_0 = const()[name = string("concat_131_values1_0"), val = int32(1)]; + int32 concat_131_values2_0 = const()[name = string("concat_131_values2_0"), val = int32(0)]; + int32 concat_131_axis_0 = const()[name = string("concat_131_axis_0"), val = int32(0)]; + bool concat_131_interleave_0 = const()[name = string("concat_131_interleave_0"), val = bool(false)]; + int32 gather_129_cast_uint16_to_int32 = cast(dtype = gather_129_cast_uint16_to_int32_dtype_0, x = gather_129_cast_uint16)[name = string("cast_169")]; + tensor concat_131 = concat(axis = concat_131_axis_0, interleave = concat_131_interleave_0, values = (concat_131_values0_0, concat_131_values1_0, concat_131_values2_0, gather_129_cast_uint16_to_int32))[name = string("concat_131")]; + tensor causal_mask_15_begin_0 = const()[name = string("causal_mask_15_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor causal_mask_15_end_mask_0 = const()[name = string("causal_mask_15_end_mask_0"), val = tensor([true, true, true, false])]; + tensor causal_mask_15_cast_fp16 = slice_by_index(begin = causal_mask_15_begin_0, end = concat_131, end_mask = causal_mask_15_end_mask_0, x = causal_mask)[name = string("causal_mask_15_cast_fp16")]; + tensor attn_output_25_cast_fp16 = scaled_dot_product_attention(attn_mask = causal_mask_15_cast_fp16, key = key_states_27_cast_fp16, query = query_states_27_cast_fp16, value = value_states_27_cast_fp16)[name = string("attn_output_25_cast_fp16")]; + tensor var_1414_perm_0 = const()[name = string("op_1414_perm_0"), val = tensor([0, 2, 1, 3])]; + int32 concat_132_axis_0 = const()[name = string("concat_132_axis_0"), val = int32(0)]; + bool concat_132_interleave_0 = const()[name = string("concat_132_interleave_0"), val = bool(false)]; + int32 gather_113_cast_uint16_to_int32 = cast(dtype = gather_113_cast_uint16_to_int32_dtype_0, x = gather_113_cast_uint16)[name = string("cast_168")]; + tensor concat_132 = concat(axis = concat_132_axis_0, interleave = concat_132_interleave_0, values = (gather_112, gather_113_cast_uint16_to_int32, var_72))[name = string("concat_132")]; + tensor var_1414_cast_fp16 = transpose(perm = var_1414_perm_0, x = attn_output_25_cast_fp16)[name = string("transpose_84")]; + tensor input_49_cast_fp16 = reshape(shape = concat_132, x = var_1414_cast_fp16)[name = string("input_49_cast_fp16")]; + tensor model_model_layers_6_self_attn_o_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(570323968))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(575042624))))[name = string("model_model_layers_6_self_attn_o_proj_weight_to_fp16_quantized")]; + tensor linear_45_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_6_self_attn_o_proj_weight_to_fp16_quantized, x = input_49_cast_fp16)[name = string("linear_45_cast_fp16")]; + tensor hidden_states_199_cast_fp16 = add(x = hidden_states_179_cast_fp16, y = linear_45_cast_fp16)[name = string("hidden_states_199_cast_fp16")]; + fp16 var_78_promoted_13_to_fp16 = const()[name = string("op_78_promoted_13_to_fp16"), val = fp16(0x1p+1)]; + tensor var_1423_cast_fp16 = pow(x = hidden_states_199_cast_fp16, y = var_78_promoted_13_to_fp16)[name = string("op_1423_cast_fp16")]; + tensor variance_27_axes_0 = const()[name = string("variance_27_axes_0"), val = tensor([-1])]; + bool variance_27_keep_dims_0 = const()[name = string("variance_27_keep_dims_0"), val = bool(true)]; + tensor variance_27_cast_fp16 = reduce_mean(axes = variance_27_axes_0, keep_dims = variance_27_keep_dims_0, x = var_1423_cast_fp16)[name = string("variance_27_cast_fp16")]; + fp16 var_1426_to_fp16 = const()[name = string("op_1426_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_1427_cast_fp16 = add(x = variance_27_cast_fp16, y = var_1426_to_fp16)[name = string("op_1427_cast_fp16")]; + fp32 var_1428_epsilon_0 = const()[name = string("op_1428_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_1428_cast_fp16 = rsqrt(epsilon = var_1428_epsilon_0, x = var_1427_cast_fp16)[name = string("op_1428_cast_fp16")]; + tensor hidden_states_203_cast_fp16 = mul(x = hidden_states_199_cast_fp16, y = var_1428_cast_fp16)[name = string("hidden_states_203_cast_fp16")]; + tensor model_model_layers_6_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_6_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(575632512)))]; + tensor input_51_cast_fp16 = mul(x = model_model_layers_6_post_attention_layernorm_weight_to_fp16, y = hidden_states_203_cast_fp16)[name = string("input_51_cast_fp16")]; + tensor model_model_layers_6_mlp_gate_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(575638720))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(588221696))))[name = string("model_model_layers_6_mlp_gate_proj_weight_to_fp16_quantized")]; + tensor linear_46_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_6_mlp_gate_proj_weight_to_fp16_quantized, x = input_51_cast_fp16)[name = string("linear_46_cast_fp16")]; + tensor var_1440_cast_fp16 = silu(x = linear_46_cast_fp16)[name = string("op_1440_cast_fp16")]; + tensor model_model_layers_6_mlp_up_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(589794624))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(602377600))))[name = string("model_model_layers_6_mlp_up_proj_weight_to_fp16_quantized")]; + tensor linear_47_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_6_mlp_up_proj_weight_to_fp16_quantized, x = input_51_cast_fp16)[name = string("linear_47_cast_fp16")]; + tensor input_55_cast_fp16 = mul(x = var_1440_cast_fp16, y = linear_47_cast_fp16)[name = string("input_55_cast_fp16")]; + tensor model_model_layers_6_mlp_down_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(603950528))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(616533504))))[name = string("model_model_layers_6_mlp_down_proj_weight_to_fp16_quantized")]; + tensor linear_48_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_6_mlp_down_proj_weight_to_fp16_quantized, x = input_55_cast_fp16)[name = string("linear_48_cast_fp16")]; + tensor hidden_states_209_cast_fp16 = add(x = hidden_states_199_cast_fp16, y = linear_48_cast_fp16)[name = string("hidden_states_209_cast_fp16")]; + fp16 var_78_promoted_14_to_fp16 = const()[name = string("op_78_promoted_14_to_fp16"), val = fp16(0x1p+1)]; + tensor var_1453_cast_fp16 = pow(x = hidden_states_209_cast_fp16, y = var_78_promoted_14_to_fp16)[name = string("op_1453_cast_fp16")]; + tensor variance_29_axes_0 = const()[name = string("variance_29_axes_0"), val = tensor([-1])]; + bool variance_29_keep_dims_0 = const()[name = string("variance_29_keep_dims_0"), val = bool(true)]; + tensor variance_29_cast_fp16 = reduce_mean(axes = variance_29_axes_0, keep_dims = variance_29_keep_dims_0, x = var_1453_cast_fp16)[name = string("variance_29_cast_fp16")]; + fp16 var_1456_to_fp16 = const()[name = string("op_1456_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_1457_cast_fp16 = add(x = variance_29_cast_fp16, y = var_1456_to_fp16)[name = string("op_1457_cast_fp16")]; + fp32 var_1458_epsilon_0 = const()[name = string("op_1458_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_1458_cast_fp16 = rsqrt(epsilon = var_1458_epsilon_0, x = var_1457_cast_fp16)[name = string("op_1458_cast_fp16")]; + tensor hidden_states_213_cast_fp16 = mul(x = hidden_states_209_cast_fp16, y = var_1458_cast_fp16)[name = string("hidden_states_213_cast_fp16")]; + tensor model_model_layers_7_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_7_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(618106432)))]; + tensor hidden_states_217_cast_fp16 = mul(x = model_model_layers_7_input_layernorm_weight_to_fp16, y = hidden_states_213_cast_fp16)[name = string("hidden_states_217_cast_fp16")]; + tensor var_1469_shape_cast_fp16 = shape(x = hidden_states_217_cast_fp16)[name = string("op_1469_shape_cast_fp16")]; + int32 gather_130 = const()[name = string("gather_130"), val = int32(1)]; + int32 gather_131_axis_0 = const()[name = string("gather_131_axis_0"), val = int32(0)]; + int32 gather_131_batch_dims_0 = const()[name = string("gather_131_batch_dims_0"), val = int32(0)]; + bool gather_131_validate_indices_0 = const()[name = string("gather_131_validate_indices_0"), val = bool(false)]; + string var_1469_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_1469_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_131_to_uint16 = const()[name = string("select_131_to_uint16"), val = uint16(1)]; + tensor var_1469_shape_cast_fp16_to_uint16 = cast(dtype = var_1469_shape_cast_fp16_to_uint16_dtype_0, x = var_1469_shape_cast_fp16)[name = string("cast_167")]; + uint16 gather_131_cast_uint16 = gather(axis = gather_131_axis_0, batch_dims = gather_131_batch_dims_0, indices = select_131_to_uint16, validate_indices = gather_131_validate_indices_0, x = var_1469_shape_cast_fp16_to_uint16)[name = string("gather_131_cast_uint16")]; + string gather_131_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_131_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor model_model_layers_7_self_attn_q_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(618112640))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(622831296))))[name = string("model_model_layers_7_self_attn_q_proj_weight_to_fp16_quantized")]; + tensor linear_49_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_7_self_attn_q_proj_weight_to_fp16_quantized, x = hidden_states_217_cast_fp16)[name = string("linear_49_cast_fp16")]; + tensor model_model_layers_7_self_attn_k_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(623421184))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(624994112))))[name = string("model_model_layers_7_self_attn_k_proj_weight_to_fp16_quantized")]; + tensor linear_50_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_7_self_attn_k_proj_weight_to_fp16_quantized, x = hidden_states_217_cast_fp16)[name = string("linear_50_cast_fp16")]; + tensor model_model_layers_7_self_attn_v_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(625190784))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(626763712))))[name = string("model_model_layers_7_self_attn_v_proj_weight_to_fp16_quantized")]; + tensor linear_51_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_7_self_attn_v_proj_weight_to_fp16_quantized, x = hidden_states_217_cast_fp16)[name = string("linear_51_cast_fp16")]; + tensor concat_133x = const()[name = string("concat_133x"), val = tensor([1, -1, 24, 128])]; + tensor var_1478_cast_fp16 = reshape(shape = concat_133x, x = linear_49_cast_fp16)[name = string("op_1478_cast_fp16")]; + tensor q_15_perm_0 = const()[name = string("q_15_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_134x = const()[name = string("concat_134x"), val = tensor([1, -1, 8, 128])]; + tensor var_1481_cast_fp16 = reshape(shape = concat_134x, x = linear_50_cast_fp16)[name = string("op_1481_cast_fp16")]; + tensor k_15_perm_0 = const()[name = string("k_15_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_135x = const()[name = string("concat_135x"), val = tensor([1, -1, 8, 128])]; + tensor var_1484_cast_fp16 = reshape(shape = concat_135x, x = linear_51_cast_fp16)[name = string("op_1484_cast_fp16")]; + tensor v_state_15_perm_0 = const()[name = string("v_state_15_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor q_15_cast_fp16 = transpose(perm = q_15_perm_0, x = var_1478_cast_fp16)[name = string("transpose_83")]; + tensor var_1488_cast_fp16 = mul(x = q_15_cast_fp16, y = cos_7_cast_fp16)[name = string("op_1488_cast_fp16")]; + tensor x1_29_begin_0 = const()[name = string("x1_29_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_29_end_0 = const()[name = string("x1_29_end_0"), val = tensor([1, 24, 0, 64])]; + tensor x1_29_end_mask_0 = const()[name = string("x1_29_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_29_cast_fp16 = slice_by_index(begin = x1_29_begin_0, end = x1_29_end_0, end_mask = x1_29_end_mask_0, x = q_15_cast_fp16)[name = string("x1_29_cast_fp16")]; + tensor x2_29_begin_0 = const()[name = string("x2_29_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_29_end_0 = const()[name = string("x2_29_end_0"), val = tensor([1, 24, 0, 128])]; + tensor x2_29_end_mask_0 = const()[name = string("x2_29_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_29_cast_fp16 = slice_by_index(begin = x2_29_begin_0, end = x2_29_end_0, end_mask = x2_29_end_mask_0, x = q_15_cast_fp16)[name = string("x2_29_cast_fp16")]; + fp16 const_17_promoted_to_fp16 = const()[name = string("const_17_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_1499_cast_fp16 = mul(x = x2_29_cast_fp16, y = const_17_promoted_to_fp16)[name = string("op_1499_cast_fp16")]; + bool var_1501_interleave_0 = const()[name = string("op_1501_interleave_0"), val = bool(false)]; + tensor var_1501_cast_fp16 = concat(axis = var_72, interleave = var_1501_interleave_0, values = (var_1499_cast_fp16, x1_29_cast_fp16))[name = string("op_1501_cast_fp16")]; + tensor var_1502_cast_fp16 = mul(x = var_1501_cast_fp16, y = sin_7_cast_fp16)[name = string("op_1502_cast_fp16")]; + tensor query_states_31_cast_fp16 = add(x = var_1488_cast_fp16, y = var_1502_cast_fp16)[name = string("query_states_31_cast_fp16")]; + tensor k_15_cast_fp16 = transpose(perm = k_15_perm_0, x = var_1481_cast_fp16)[name = string("transpose_82")]; + tensor var_1504_cast_fp16 = mul(x = k_15_cast_fp16, y = cos_7_cast_fp16)[name = string("op_1504_cast_fp16")]; + tensor x1_31_begin_0 = const()[name = string("x1_31_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_31_end_0 = const()[name = string("x1_31_end_0"), val = tensor([1, 8, 0, 64])]; + tensor x1_31_end_mask_0 = const()[name = string("x1_31_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_31_cast_fp16 = slice_by_index(begin = x1_31_begin_0, end = x1_31_end_0, end_mask = x1_31_end_mask_0, x = k_15_cast_fp16)[name = string("x1_31_cast_fp16")]; + tensor x2_31_begin_0 = const()[name = string("x2_31_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_31_end_0 = const()[name = string("x2_31_end_0"), val = tensor([1, 8, 0, 128])]; + tensor x2_31_end_mask_0 = const()[name = string("x2_31_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_31_cast_fp16 = slice_by_index(begin = x2_31_begin_0, end = x2_31_end_0, end_mask = x2_31_end_mask_0, x = k_15_cast_fp16)[name = string("x2_31_cast_fp16")]; + fp16 const_18_promoted_to_fp16 = const()[name = string("const_18_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_1515_cast_fp16 = mul(x = x2_31_cast_fp16, y = const_18_promoted_to_fp16)[name = string("op_1515_cast_fp16")]; + bool var_1517_interleave_0 = const()[name = string("op_1517_interleave_0"), val = bool(false)]; + tensor var_1517_cast_fp16 = concat(axis = var_72, interleave = var_1517_interleave_0, values = (var_1515_cast_fp16, x1_31_cast_fp16))[name = string("op_1517_cast_fp16")]; + tensor var_1518_cast_fp16 = mul(x = var_1517_cast_fp16, y = sin_7_cast_fp16)[name = string("op_1518_cast_fp16")]; + tensor k_state_15_cast_fp16 = add(x = var_1504_cast_fp16, y = var_1518_cast_fp16)[name = string("k_state_15_cast_fp16")]; + tensor expand_dims_84 = const()[name = string("expand_dims_84"), val = tensor([0])]; + tensor expand_dims_85 = const()[name = string("expand_dims_85"), val = tensor([0])]; + tensor expand_dims_87 = const()[name = string("expand_dims_87"), val = tensor([0])]; + tensor concat_138_values0_0 = const()[name = string("concat_138_values0_0"), val = tensor([7])]; + int32 concat_138_axis_0 = const()[name = string("concat_138_axis_0"), val = int32(0)]; + bool concat_138_interleave_0 = const()[name = string("concat_138_interleave_0"), val = bool(false)]; + tensor concat_138 = concat(axis = concat_138_axis_0, interleave = concat_138_interleave_0, values = (concat_138_values0_0, expand_dims_84, expand_dims_85, expand_dims_2, expand_dims_87))[name = string("concat_138")]; + tensor key_cache_internal_tensor_assign_8_stride_0 = const()[name = string("key_cache_internal_tensor_assign_8_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor key_cache_internal_tensor_assign_8_begin_mask_0 = const()[name = string("key_cache_internal_tensor_assign_8_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_8_end_mask_0 = const()[name = string("key_cache_internal_tensor_assign_8_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor key_cache_internal_tensor_assign_8_squeeze_mask_0 = const()[name = string("key_cache_internal_tensor_assign_8_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_8_cast_fp16 = slice_update(begin = concat_138, begin_mask = key_cache_internal_tensor_assign_8_begin_mask_0, end = concat_6, end_mask = key_cache_internal_tensor_assign_8_end_mask_0, squeeze_mask = key_cache_internal_tensor_assign_8_squeeze_mask_0, stride = key_cache_internal_tensor_assign_8_stride_0, update = k_state_15_cast_fp16, x = coreml_update_state_68)[name = string("key_cache_internal_tensor_assign_8_cast_fp16")]; + write_state(data = key_cache_internal_tensor_assign_8_cast_fp16, input = key_cache)[name = string("coreml_update_state_70_write_state")]; + tensor coreml_update_state_70 = read_state(input = key_cache)[name = string("coreml_update_state_70")]; + tensor value_cache_internal_tensor_assign_8_stride_0 = const()[name = string("value_cache_internal_tensor_assign_8_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor value_cache_internal_tensor_assign_8_begin_mask_0 = const()[name = string("value_cache_internal_tensor_assign_8_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor value_cache_internal_tensor_assign_8_end_mask_0 = const()[name = string("value_cache_internal_tensor_assign_8_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor value_cache_internal_tensor_assign_8_squeeze_mask_0 = const()[name = string("value_cache_internal_tensor_assign_8_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor v_state_15_cast_fp16 = transpose(perm = v_state_15_perm_0, x = var_1484_cast_fp16)[name = string("transpose_81")]; + tensor value_cache_internal_tensor_assign_8_cast_fp16 = slice_update(begin = concat_138, begin_mask = value_cache_internal_tensor_assign_8_begin_mask_0, end = concat_6, end_mask = value_cache_internal_tensor_assign_8_end_mask_0, squeeze_mask = value_cache_internal_tensor_assign_8_squeeze_mask_0, stride = value_cache_internal_tensor_assign_8_stride_0, update = v_state_15_cast_fp16, x = coreml_update_state_69)[name = string("value_cache_internal_tensor_assign_8_cast_fp16")]; + write_state(data = value_cache_internal_tensor_assign_8_cast_fp16, input = value_cache)[name = string("coreml_update_state_71_write_state")]; + tensor coreml_update_state_71 = read_state(input = value_cache)[name = string("coreml_update_state_71")]; + tensor var_1541_begin_0 = const()[name = string("op_1541_begin_0"), val = tensor([7, 0, 0, 0, 0])]; + tensor var_1541_end_0 = const()[name = string("op_1541_end_0"), val = tensor([8, 1, 8, 2048, 128])]; + tensor var_1541_end_mask_0 = const()[name = string("op_1541_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_1541_squeeze_mask_0 = const()[name = string("op_1541_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_1541_cast_fp16 = slice_by_index(begin = var_1541_begin_0, end = var_1541_end_0, end_mask = var_1541_end_mask_0, squeeze_mask = var_1541_squeeze_mask_0, x = coreml_update_state_70)[name = string("op_1541_cast_fp16")]; + tensor var_1544_begin_0 = const()[name = string("op_1544_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_1544_end_mask_0 = const()[name = string("op_1544_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_1544_cast_fp16 = slice_by_index(begin = var_1544_begin_0, end = concat_11, end_mask = var_1544_end_mask_0, x = var_1541_cast_fp16)[name = string("op_1544_cast_fp16")]; + tensor var_1546_begin_0 = const()[name = string("op_1546_begin_0"), val = tensor([7, 0, 0, 0, 0])]; + tensor var_1546_end_0 = const()[name = string("op_1546_end_0"), val = tensor([8, 1, 8, 2048, 128])]; + tensor var_1546_end_mask_0 = const()[name = string("op_1546_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_1546_squeeze_mask_0 = const()[name = string("op_1546_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_1546_cast_fp16 = slice_by_index(begin = var_1546_begin_0, end = var_1546_end_0, end_mask = var_1546_end_mask_0, squeeze_mask = var_1546_squeeze_mask_0, x = coreml_update_state_71)[name = string("op_1546_cast_fp16")]; + tensor var_1549_begin_0 = const()[name = string("op_1549_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_1549_end_mask_0 = const()[name = string("op_1549_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_1549_cast_fp16 = slice_by_index(begin = var_1549_begin_0, end = concat_11, end_mask = var_1549_end_mask_0, x = var_1546_cast_fp16)[name = string("op_1549_cast_fp16")]; + tensor var_1551_shape_cast_fp16 = shape(x = var_1544_cast_fp16)[name = string("op_1551_shape_cast_fp16")]; + int32 gather_139 = const()[name = string("gather_139"), val = int32(1)]; + int32 gather_140 = const()[name = string("gather_140"), val = int32(8)]; + int32 gather_141_axis_0 = const()[name = string("gather_141_axis_0"), val = int32(0)]; + int32 gather_141_batch_dims_0 = const()[name = string("gather_141_batch_dims_0"), val = int32(0)]; + bool gather_141_validate_indices_0 = const()[name = string("gather_141_validate_indices_0"), val = bool(false)]; + string var_1551_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_1551_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_141_to_uint16 = const()[name = string("select_141_to_uint16"), val = uint16(2)]; + tensor var_1551_shape_cast_fp16_to_uint16 = cast(dtype = var_1551_shape_cast_fp16_to_uint16_dtype_0, x = var_1551_shape_cast_fp16)[name = string("cast_166")]; + uint16 gather_141_cast_uint16 = gather(axis = gather_141_axis_0, batch_dims = gather_141_batch_dims_0, indices = select_141_to_uint16, validate_indices = gather_141_validate_indices_0, x = var_1551_shape_cast_fp16_to_uint16)[name = string("gather_141_cast_uint16")]; + string gather_141_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_141_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_142 = const()[name = string("gather_142"), val = int32(128)]; + tensor var_1558_axes_0 = const()[name = string("op_1558_axes_0"), val = tensor([2])]; + tensor var_1558_cast_fp16 = expand_dims(axes = var_1558_axes_0, x = var_1544_cast_fp16)[name = string("op_1558_cast_fp16")]; + tensor shape_157_cast_fp16 = shape(x = var_1558_cast_fp16)[name = string("shape_157_cast_fp16")]; + int32 concat_146_axis_0 = const()[name = string("concat_146_axis_0"), val = int32(0)]; + bool concat_146_interleave_0 = const()[name = string("concat_146_interleave_0"), val = bool(false)]; + int32 gather_141_cast_uint16_to_int32 = cast(dtype = gather_141_cast_uint16_to_int32_dtype_0, x = gather_141_cast_uint16)[name = string("cast_165")]; + tensor concat_146 = concat(axis = concat_146_axis_0, interleave = concat_146_interleave_0, values = (gather_139, gather_140, var_81, gather_141_cast_uint16_to_int32, gather_142))[name = string("concat_146")]; + tensor real_div_14 = real_div(x = concat_146, y = shape_157_cast_fp16)[name = string("real_div_14")]; + tensor hidden_states_221_cast_fp16 = tile(reps = real_div_14, x = var_1558_cast_fp16)[name = string("hidden_states_221_cast_fp16")]; + tensor concat_147x = const()[name = string("concat_147x"), val = tensor([1, 24, -1, 128])]; + tensor key_states_31_cast_fp16 = reshape(shape = concat_147x, x = hidden_states_221_cast_fp16)[name = string("key_states_31_cast_fp16")]; + tensor var_1568_shape_cast_fp16 = shape(x = var_1549_cast_fp16)[name = string("op_1568_shape_cast_fp16")]; + int32 gather_143 = const()[name = string("gather_143"), val = int32(1)]; + int32 gather_144 = const()[name = string("gather_144"), val = int32(8)]; + int32 gather_145_axis_0 = const()[name = string("gather_145_axis_0"), val = int32(0)]; + int32 gather_145_batch_dims_0 = const()[name = string("gather_145_batch_dims_0"), val = int32(0)]; + bool gather_145_validate_indices_0 = const()[name = string("gather_145_validate_indices_0"), val = bool(false)]; + string var_1568_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_1568_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_145_to_uint16 = const()[name = string("select_145_to_uint16"), val = uint16(2)]; + tensor var_1568_shape_cast_fp16_to_uint16 = cast(dtype = var_1568_shape_cast_fp16_to_uint16_dtype_0, x = var_1568_shape_cast_fp16)[name = string("cast_164")]; + uint16 gather_145_cast_uint16 = gather(axis = gather_145_axis_0, batch_dims = gather_145_batch_dims_0, indices = select_145_to_uint16, validate_indices = gather_145_validate_indices_0, x = var_1568_shape_cast_fp16_to_uint16)[name = string("gather_145_cast_uint16")]; + string gather_145_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_145_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_146 = const()[name = string("gather_146"), val = int32(128)]; + tensor var_1575_axes_0 = const()[name = string("op_1575_axes_0"), val = tensor([2])]; + tensor var_1575_cast_fp16 = expand_dims(axes = var_1575_axes_0, x = var_1549_cast_fp16)[name = string("op_1575_cast_fp16")]; + tensor shape_162_cast_fp16 = shape(x = var_1575_cast_fp16)[name = string("shape_162_cast_fp16")]; + int32 concat_148_axis_0 = const()[name = string("concat_148_axis_0"), val = int32(0)]; + bool concat_148_interleave_0 = const()[name = string("concat_148_interleave_0"), val = bool(false)]; + int32 gather_145_cast_uint16_to_int32 = cast(dtype = gather_145_cast_uint16_to_int32_dtype_0, x = gather_145_cast_uint16)[name = string("cast_163")]; + tensor concat_148 = concat(axis = concat_148_axis_0, interleave = concat_148_interleave_0, values = (gather_143, gather_144, var_81, gather_145_cast_uint16_to_int32, gather_146))[name = string("concat_148")]; + tensor real_div_15 = real_div(x = concat_148, y = shape_162_cast_fp16)[name = string("real_div_15")]; + tensor hidden_states_225_cast_fp16 = tile(reps = real_div_15, x = var_1575_cast_fp16)[name = string("hidden_states_225_cast_fp16")]; + tensor concat_149x = const()[name = string("concat_149x"), val = tensor([1, 24, -1, 128])]; + tensor value_states_31_cast_fp16 = reshape(shape = concat_149x, x = hidden_states_225_cast_fp16)[name = string("value_states_31_cast_fp16")]; + tensor var_1585_shape_cast_fp16 = shape(x = key_states_31_cast_fp16)[name = string("op_1585_shape_cast_fp16")]; + int32 gather_147_axis_0 = const()[name = string("gather_147_axis_0"), val = int32(0)]; + int32 gather_147_batch_dims_0 = const()[name = string("gather_147_batch_dims_0"), val = int32(0)]; + bool gather_147_validate_indices_0 = const()[name = string("gather_147_validate_indices_0"), val = bool(false)]; + string var_1585_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_1585_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_147_to_uint16 = const()[name = string("select_147_to_uint16"), val = uint16(2)]; + tensor var_1585_shape_cast_fp16_to_uint16 = cast(dtype = var_1585_shape_cast_fp16_to_uint16_dtype_0, x = var_1585_shape_cast_fp16)[name = string("cast_162")]; + uint16 gather_147_cast_uint16 = gather(axis = gather_147_axis_0, batch_dims = gather_147_batch_dims_0, indices = select_147_to_uint16, validate_indices = gather_147_validate_indices_0, x = var_1585_shape_cast_fp16_to_uint16)[name = string("gather_147_cast_uint16")]; + string gather_147_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_147_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 concat_150_values0_0 = const()[name = string("concat_150_values0_0"), val = int32(1)]; + int32 concat_150_values1_0 = const()[name = string("concat_150_values1_0"), val = int32(1)]; + int32 concat_150_values2_0 = const()[name = string("concat_150_values2_0"), val = int32(0)]; + int32 concat_150_axis_0 = const()[name = string("concat_150_axis_0"), val = int32(0)]; + bool concat_150_interleave_0 = const()[name = string("concat_150_interleave_0"), val = bool(false)]; + int32 gather_147_cast_uint16_to_int32 = cast(dtype = gather_147_cast_uint16_to_int32_dtype_0, x = gather_147_cast_uint16)[name = string("cast_161")]; + tensor concat_150 = concat(axis = concat_150_axis_0, interleave = concat_150_interleave_0, values = (concat_150_values0_0, concat_150_values1_0, concat_150_values2_0, gather_147_cast_uint16_to_int32))[name = string("concat_150")]; + tensor causal_mask_17_begin_0 = const()[name = string("causal_mask_17_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor causal_mask_17_end_mask_0 = const()[name = string("causal_mask_17_end_mask_0"), val = tensor([true, true, true, false])]; + tensor causal_mask_17_cast_fp16 = slice_by_index(begin = causal_mask_17_begin_0, end = concat_150, end_mask = causal_mask_17_end_mask_0, x = causal_mask)[name = string("causal_mask_17_cast_fp16")]; + tensor attn_output_29_cast_fp16 = scaled_dot_product_attention(attn_mask = causal_mask_17_cast_fp16, key = key_states_31_cast_fp16, query = query_states_31_cast_fp16, value = value_states_31_cast_fp16)[name = string("attn_output_29_cast_fp16")]; + tensor var_1591_perm_0 = const()[name = string("op_1591_perm_0"), val = tensor([0, 2, 1, 3])]; + int32 concat_151_axis_0 = const()[name = string("concat_151_axis_0"), val = int32(0)]; + bool concat_151_interleave_0 = const()[name = string("concat_151_interleave_0"), val = bool(false)]; + int32 gather_131_cast_uint16_to_int32 = cast(dtype = gather_131_cast_uint16_to_int32_dtype_0, x = gather_131_cast_uint16)[name = string("cast_160")]; + tensor concat_151 = concat(axis = concat_151_axis_0, interleave = concat_151_interleave_0, values = (gather_130, gather_131_cast_uint16_to_int32, var_72))[name = string("concat_151")]; + tensor var_1591_cast_fp16 = transpose(perm = var_1591_perm_0, x = attn_output_29_cast_fp16)[name = string("transpose_80")]; + tensor input_57_cast_fp16 = reshape(shape = concat_151, x = var_1591_cast_fp16)[name = string("input_57_cast_fp16")]; + tensor model_model_layers_7_self_attn_o_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(626960384))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(631679040))))[name = string("model_model_layers_7_self_attn_o_proj_weight_to_fp16_quantized")]; + tensor linear_52_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_7_self_attn_o_proj_weight_to_fp16_quantized, x = input_57_cast_fp16)[name = string("linear_52_cast_fp16")]; + tensor hidden_states_229_cast_fp16 = add(x = hidden_states_209_cast_fp16, y = linear_52_cast_fp16)[name = string("hidden_states_229_cast_fp16")]; + fp16 var_78_promoted_15_to_fp16 = const()[name = string("op_78_promoted_15_to_fp16"), val = fp16(0x1p+1)]; + tensor var_1600_cast_fp16 = pow(x = hidden_states_229_cast_fp16, y = var_78_promoted_15_to_fp16)[name = string("op_1600_cast_fp16")]; + tensor variance_31_axes_0 = const()[name = string("variance_31_axes_0"), val = tensor([-1])]; + bool variance_31_keep_dims_0 = const()[name = string("variance_31_keep_dims_0"), val = bool(true)]; + tensor variance_31_cast_fp16 = reduce_mean(axes = variance_31_axes_0, keep_dims = variance_31_keep_dims_0, x = var_1600_cast_fp16)[name = string("variance_31_cast_fp16")]; + fp16 var_1603_to_fp16 = const()[name = string("op_1603_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_1604_cast_fp16 = add(x = variance_31_cast_fp16, y = var_1603_to_fp16)[name = string("op_1604_cast_fp16")]; + fp32 var_1605_epsilon_0 = const()[name = string("op_1605_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_1605_cast_fp16 = rsqrt(epsilon = var_1605_epsilon_0, x = var_1604_cast_fp16)[name = string("op_1605_cast_fp16")]; + tensor hidden_states_233_cast_fp16 = mul(x = hidden_states_229_cast_fp16, y = var_1605_cast_fp16)[name = string("hidden_states_233_cast_fp16")]; + tensor model_model_layers_7_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_7_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(632268928)))]; + tensor input_59_cast_fp16 = mul(x = model_model_layers_7_post_attention_layernorm_weight_to_fp16, y = hidden_states_233_cast_fp16)[name = string("input_59_cast_fp16")]; + tensor model_model_layers_7_mlp_gate_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(632275136))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(644858112))))[name = string("model_model_layers_7_mlp_gate_proj_weight_to_fp16_quantized")]; + tensor linear_53_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_7_mlp_gate_proj_weight_to_fp16_quantized, x = input_59_cast_fp16)[name = string("linear_53_cast_fp16")]; + tensor var_1617_cast_fp16 = silu(x = linear_53_cast_fp16)[name = string("op_1617_cast_fp16")]; + tensor model_model_layers_7_mlp_up_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(646431040))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(659014016))))[name = string("model_model_layers_7_mlp_up_proj_weight_to_fp16_quantized")]; + tensor linear_54_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_7_mlp_up_proj_weight_to_fp16_quantized, x = input_59_cast_fp16)[name = string("linear_54_cast_fp16")]; + tensor input_63_cast_fp16 = mul(x = var_1617_cast_fp16, y = linear_54_cast_fp16)[name = string("input_63_cast_fp16")]; + tensor model_model_layers_7_mlp_down_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(660586944))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(673169920))))[name = string("model_model_layers_7_mlp_down_proj_weight_to_fp16_quantized")]; + tensor linear_55_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_7_mlp_down_proj_weight_to_fp16_quantized, x = input_63_cast_fp16)[name = string("linear_55_cast_fp16")]; + tensor hidden_states_239_cast_fp16 = add(x = hidden_states_229_cast_fp16, y = linear_55_cast_fp16)[name = string("hidden_states_239_cast_fp16")]; + fp16 var_78_promoted_16_to_fp16 = const()[name = string("op_78_promoted_16_to_fp16"), val = fp16(0x1p+1)]; + tensor var_1630_cast_fp16 = pow(x = hidden_states_239_cast_fp16, y = var_78_promoted_16_to_fp16)[name = string("op_1630_cast_fp16")]; + tensor variance_33_axes_0 = const()[name = string("variance_33_axes_0"), val = tensor([-1])]; + bool variance_33_keep_dims_0 = const()[name = string("variance_33_keep_dims_0"), val = bool(true)]; + tensor variance_33_cast_fp16 = reduce_mean(axes = variance_33_axes_0, keep_dims = variance_33_keep_dims_0, x = var_1630_cast_fp16)[name = string("variance_33_cast_fp16")]; + fp16 var_1633_to_fp16 = const()[name = string("op_1633_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_1634_cast_fp16 = add(x = variance_33_cast_fp16, y = var_1633_to_fp16)[name = string("op_1634_cast_fp16")]; + fp32 var_1635_epsilon_0 = const()[name = string("op_1635_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_1635_cast_fp16 = rsqrt(epsilon = var_1635_epsilon_0, x = var_1634_cast_fp16)[name = string("op_1635_cast_fp16")]; + tensor hidden_states_243_cast_fp16 = mul(x = hidden_states_239_cast_fp16, y = var_1635_cast_fp16)[name = string("hidden_states_243_cast_fp16")]; + tensor model_model_layers_8_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_8_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(674742848)))]; + tensor hidden_states_247_cast_fp16 = mul(x = model_model_layers_8_input_layernorm_weight_to_fp16, y = hidden_states_243_cast_fp16)[name = string("hidden_states_247_cast_fp16")]; + tensor var_1646_shape_cast_fp16 = shape(x = hidden_states_247_cast_fp16)[name = string("op_1646_shape_cast_fp16")]; + int32 gather_148 = const()[name = string("gather_148"), val = int32(1)]; + int32 gather_149_axis_0 = const()[name = string("gather_149_axis_0"), val = int32(0)]; + int32 gather_149_batch_dims_0 = const()[name = string("gather_149_batch_dims_0"), val = int32(0)]; + bool gather_149_validate_indices_0 = const()[name = string("gather_149_validate_indices_0"), val = bool(false)]; + string var_1646_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_1646_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_149_to_uint16 = const()[name = string("select_149_to_uint16"), val = uint16(1)]; + tensor var_1646_shape_cast_fp16_to_uint16 = cast(dtype = var_1646_shape_cast_fp16_to_uint16_dtype_0, x = var_1646_shape_cast_fp16)[name = string("cast_159")]; + uint16 gather_149_cast_uint16 = gather(axis = gather_149_axis_0, batch_dims = gather_149_batch_dims_0, indices = select_149_to_uint16, validate_indices = gather_149_validate_indices_0, x = var_1646_shape_cast_fp16_to_uint16)[name = string("gather_149_cast_uint16")]; + string gather_149_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_149_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor model_model_layers_8_self_attn_q_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(674749056))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(679467712))))[name = string("model_model_layers_8_self_attn_q_proj_weight_to_fp16_quantized")]; + tensor linear_56_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_8_self_attn_q_proj_weight_to_fp16_quantized, x = hidden_states_247_cast_fp16)[name = string("linear_56_cast_fp16")]; + tensor model_model_layers_8_self_attn_k_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(680057600))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(681630528))))[name = string("model_model_layers_8_self_attn_k_proj_weight_to_fp16_quantized")]; + tensor linear_57_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_8_self_attn_k_proj_weight_to_fp16_quantized, x = hidden_states_247_cast_fp16)[name = string("linear_57_cast_fp16")]; + tensor model_model_layers_8_self_attn_v_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(681827200))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(683400128))))[name = string("model_model_layers_8_self_attn_v_proj_weight_to_fp16_quantized")]; + tensor linear_58_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_8_self_attn_v_proj_weight_to_fp16_quantized, x = hidden_states_247_cast_fp16)[name = string("linear_58_cast_fp16")]; + tensor concat_152x = const()[name = string("concat_152x"), val = tensor([1, -1, 24, 128])]; + tensor var_1655_cast_fp16 = reshape(shape = concat_152x, x = linear_56_cast_fp16)[name = string("op_1655_cast_fp16")]; + tensor q_17_perm_0 = const()[name = string("q_17_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_153x = const()[name = string("concat_153x"), val = tensor([1, -1, 8, 128])]; + tensor var_1658_cast_fp16 = reshape(shape = concat_153x, x = linear_57_cast_fp16)[name = string("op_1658_cast_fp16")]; + tensor k_17_perm_0 = const()[name = string("k_17_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_154x = const()[name = string("concat_154x"), val = tensor([1, -1, 8, 128])]; + tensor var_1661_cast_fp16 = reshape(shape = concat_154x, x = linear_58_cast_fp16)[name = string("op_1661_cast_fp16")]; + tensor v_state_17_perm_0 = const()[name = string("v_state_17_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor q_17_cast_fp16 = transpose(perm = q_17_perm_0, x = var_1655_cast_fp16)[name = string("transpose_79")]; + tensor var_1665_cast_fp16 = mul(x = q_17_cast_fp16, y = cos_7_cast_fp16)[name = string("op_1665_cast_fp16")]; + tensor x1_33_begin_0 = const()[name = string("x1_33_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_33_end_0 = const()[name = string("x1_33_end_0"), val = tensor([1, 24, 0, 64])]; + tensor x1_33_end_mask_0 = const()[name = string("x1_33_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_33_cast_fp16 = slice_by_index(begin = x1_33_begin_0, end = x1_33_end_0, end_mask = x1_33_end_mask_0, x = q_17_cast_fp16)[name = string("x1_33_cast_fp16")]; + tensor x2_33_begin_0 = const()[name = string("x2_33_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_33_end_0 = const()[name = string("x2_33_end_0"), val = tensor([1, 24, 0, 128])]; + tensor x2_33_end_mask_0 = const()[name = string("x2_33_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_33_cast_fp16 = slice_by_index(begin = x2_33_begin_0, end = x2_33_end_0, end_mask = x2_33_end_mask_0, x = q_17_cast_fp16)[name = string("x2_33_cast_fp16")]; + fp16 const_19_promoted_to_fp16 = const()[name = string("const_19_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_1676_cast_fp16 = mul(x = x2_33_cast_fp16, y = const_19_promoted_to_fp16)[name = string("op_1676_cast_fp16")]; + bool var_1678_interleave_0 = const()[name = string("op_1678_interleave_0"), val = bool(false)]; + tensor var_1678_cast_fp16 = concat(axis = var_72, interleave = var_1678_interleave_0, values = (var_1676_cast_fp16, x1_33_cast_fp16))[name = string("op_1678_cast_fp16")]; + tensor var_1679_cast_fp16 = mul(x = var_1678_cast_fp16, y = sin_7_cast_fp16)[name = string("op_1679_cast_fp16")]; + tensor query_states_35_cast_fp16 = add(x = var_1665_cast_fp16, y = var_1679_cast_fp16)[name = string("query_states_35_cast_fp16")]; + tensor k_17_cast_fp16 = transpose(perm = k_17_perm_0, x = var_1658_cast_fp16)[name = string("transpose_78")]; + tensor var_1681_cast_fp16 = mul(x = k_17_cast_fp16, y = cos_7_cast_fp16)[name = string("op_1681_cast_fp16")]; + tensor x1_35_begin_0 = const()[name = string("x1_35_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_35_end_0 = const()[name = string("x1_35_end_0"), val = tensor([1, 8, 0, 64])]; + tensor x1_35_end_mask_0 = const()[name = string("x1_35_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_35_cast_fp16 = slice_by_index(begin = x1_35_begin_0, end = x1_35_end_0, end_mask = x1_35_end_mask_0, x = k_17_cast_fp16)[name = string("x1_35_cast_fp16")]; + tensor x2_35_begin_0 = const()[name = string("x2_35_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_35_end_0 = const()[name = string("x2_35_end_0"), val = tensor([1, 8, 0, 128])]; + tensor x2_35_end_mask_0 = const()[name = string("x2_35_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_35_cast_fp16 = slice_by_index(begin = x2_35_begin_0, end = x2_35_end_0, end_mask = x2_35_end_mask_0, x = k_17_cast_fp16)[name = string("x2_35_cast_fp16")]; + fp16 const_20_promoted_to_fp16 = const()[name = string("const_20_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_1692_cast_fp16 = mul(x = x2_35_cast_fp16, y = const_20_promoted_to_fp16)[name = string("op_1692_cast_fp16")]; + bool var_1694_interleave_0 = const()[name = string("op_1694_interleave_0"), val = bool(false)]; + tensor var_1694_cast_fp16 = concat(axis = var_72, interleave = var_1694_interleave_0, values = (var_1692_cast_fp16, x1_35_cast_fp16))[name = string("op_1694_cast_fp16")]; + tensor var_1695_cast_fp16 = mul(x = var_1694_cast_fp16, y = sin_7_cast_fp16)[name = string("op_1695_cast_fp16")]; + tensor k_state_17_cast_fp16 = add(x = var_1681_cast_fp16, y = var_1695_cast_fp16)[name = string("k_state_17_cast_fp16")]; + tensor expand_dims_96 = const()[name = string("expand_dims_96"), val = tensor([0])]; + tensor expand_dims_97 = const()[name = string("expand_dims_97"), val = tensor([0])]; + tensor expand_dims_99 = const()[name = string("expand_dims_99"), val = tensor([0])]; + tensor concat_157_values0_0 = const()[name = string("concat_157_values0_0"), val = tensor([8])]; + int32 concat_157_axis_0 = const()[name = string("concat_157_axis_0"), val = int32(0)]; + bool concat_157_interleave_0 = const()[name = string("concat_157_interleave_0"), val = bool(false)]; + tensor concat_157 = concat(axis = concat_157_axis_0, interleave = concat_157_interleave_0, values = (concat_157_values0_0, expand_dims_96, expand_dims_97, expand_dims_2, expand_dims_99))[name = string("concat_157")]; + tensor key_cache_internal_tensor_assign_9_stride_0 = const()[name = string("key_cache_internal_tensor_assign_9_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor key_cache_internal_tensor_assign_9_begin_mask_0 = const()[name = string("key_cache_internal_tensor_assign_9_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_9_end_mask_0 = const()[name = string("key_cache_internal_tensor_assign_9_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor key_cache_internal_tensor_assign_9_squeeze_mask_0 = const()[name = string("key_cache_internal_tensor_assign_9_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_9_cast_fp16 = slice_update(begin = concat_157, begin_mask = key_cache_internal_tensor_assign_9_begin_mask_0, end = concat_6, end_mask = key_cache_internal_tensor_assign_9_end_mask_0, squeeze_mask = key_cache_internal_tensor_assign_9_squeeze_mask_0, stride = key_cache_internal_tensor_assign_9_stride_0, update = k_state_17_cast_fp16, x = coreml_update_state_70)[name = string("key_cache_internal_tensor_assign_9_cast_fp16")]; + write_state(data = key_cache_internal_tensor_assign_9_cast_fp16, input = key_cache)[name = string("coreml_update_state_72_write_state")]; + tensor coreml_update_state_72 = read_state(input = key_cache)[name = string("coreml_update_state_72")]; + tensor value_cache_internal_tensor_assign_9_stride_0 = const()[name = string("value_cache_internal_tensor_assign_9_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor value_cache_internal_tensor_assign_9_begin_mask_0 = const()[name = string("value_cache_internal_tensor_assign_9_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor value_cache_internal_tensor_assign_9_end_mask_0 = const()[name = string("value_cache_internal_tensor_assign_9_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor value_cache_internal_tensor_assign_9_squeeze_mask_0 = const()[name = string("value_cache_internal_tensor_assign_9_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor v_state_17_cast_fp16 = transpose(perm = v_state_17_perm_0, x = var_1661_cast_fp16)[name = string("transpose_77")]; + tensor value_cache_internal_tensor_assign_9_cast_fp16 = slice_update(begin = concat_157, begin_mask = value_cache_internal_tensor_assign_9_begin_mask_0, end = concat_6, end_mask = value_cache_internal_tensor_assign_9_end_mask_0, squeeze_mask = value_cache_internal_tensor_assign_9_squeeze_mask_0, stride = value_cache_internal_tensor_assign_9_stride_0, update = v_state_17_cast_fp16, x = coreml_update_state_71)[name = string("value_cache_internal_tensor_assign_9_cast_fp16")]; + write_state(data = value_cache_internal_tensor_assign_9_cast_fp16, input = value_cache)[name = string("coreml_update_state_73_write_state")]; + tensor coreml_update_state_73 = read_state(input = value_cache)[name = string("coreml_update_state_73")]; + tensor var_1718_begin_0 = const()[name = string("op_1718_begin_0"), val = tensor([8, 0, 0, 0, 0])]; + tensor var_1718_end_0 = const()[name = string("op_1718_end_0"), val = tensor([9, 1, 8, 2048, 128])]; + tensor var_1718_end_mask_0 = const()[name = string("op_1718_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_1718_squeeze_mask_0 = const()[name = string("op_1718_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_1718_cast_fp16 = slice_by_index(begin = var_1718_begin_0, end = var_1718_end_0, end_mask = var_1718_end_mask_0, squeeze_mask = var_1718_squeeze_mask_0, x = coreml_update_state_72)[name = string("op_1718_cast_fp16")]; + tensor var_1721_begin_0 = const()[name = string("op_1721_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_1721_end_mask_0 = const()[name = string("op_1721_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_1721_cast_fp16 = slice_by_index(begin = var_1721_begin_0, end = concat_11, end_mask = var_1721_end_mask_0, x = var_1718_cast_fp16)[name = string("op_1721_cast_fp16")]; + tensor var_1723_begin_0 = const()[name = string("op_1723_begin_0"), val = tensor([8, 0, 0, 0, 0])]; + tensor var_1723_end_0 = const()[name = string("op_1723_end_0"), val = tensor([9, 1, 8, 2048, 128])]; + tensor var_1723_end_mask_0 = const()[name = string("op_1723_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_1723_squeeze_mask_0 = const()[name = string("op_1723_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_1723_cast_fp16 = slice_by_index(begin = var_1723_begin_0, end = var_1723_end_0, end_mask = var_1723_end_mask_0, squeeze_mask = var_1723_squeeze_mask_0, x = coreml_update_state_73)[name = string("op_1723_cast_fp16")]; + tensor var_1726_begin_0 = const()[name = string("op_1726_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_1726_end_mask_0 = const()[name = string("op_1726_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_1726_cast_fp16 = slice_by_index(begin = var_1726_begin_0, end = concat_11, end_mask = var_1726_end_mask_0, x = var_1723_cast_fp16)[name = string("op_1726_cast_fp16")]; + tensor var_1728_shape_cast_fp16 = shape(x = var_1721_cast_fp16)[name = string("op_1728_shape_cast_fp16")]; + int32 gather_157 = const()[name = string("gather_157"), val = int32(1)]; + int32 gather_158 = const()[name = string("gather_158"), val = int32(8)]; + int32 gather_159_axis_0 = const()[name = string("gather_159_axis_0"), val = int32(0)]; + int32 gather_159_batch_dims_0 = const()[name = string("gather_159_batch_dims_0"), val = int32(0)]; + bool gather_159_validate_indices_0 = const()[name = string("gather_159_validate_indices_0"), val = bool(false)]; + string var_1728_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_1728_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_159_to_uint16 = const()[name = string("select_159_to_uint16"), val = uint16(2)]; + tensor var_1728_shape_cast_fp16_to_uint16 = cast(dtype = var_1728_shape_cast_fp16_to_uint16_dtype_0, x = var_1728_shape_cast_fp16)[name = string("cast_158")]; + uint16 gather_159_cast_uint16 = gather(axis = gather_159_axis_0, batch_dims = gather_159_batch_dims_0, indices = select_159_to_uint16, validate_indices = gather_159_validate_indices_0, x = var_1728_shape_cast_fp16_to_uint16)[name = string("gather_159_cast_uint16")]; + string gather_159_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_159_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_160 = const()[name = string("gather_160"), val = int32(128)]; + tensor var_1735_axes_0 = const()[name = string("op_1735_axes_0"), val = tensor([2])]; + tensor var_1735_cast_fp16 = expand_dims(axes = var_1735_axes_0, x = var_1721_cast_fp16)[name = string("op_1735_cast_fp16")]; + tensor shape_177_cast_fp16 = shape(x = var_1735_cast_fp16)[name = string("shape_177_cast_fp16")]; + int32 concat_165_axis_0 = const()[name = string("concat_165_axis_0"), val = int32(0)]; + bool concat_165_interleave_0 = const()[name = string("concat_165_interleave_0"), val = bool(false)]; + int32 gather_159_cast_uint16_to_int32 = cast(dtype = gather_159_cast_uint16_to_int32_dtype_0, x = gather_159_cast_uint16)[name = string("cast_157")]; + tensor concat_165 = concat(axis = concat_165_axis_0, interleave = concat_165_interleave_0, values = (gather_157, gather_158, var_81, gather_159_cast_uint16_to_int32, gather_160))[name = string("concat_165")]; + tensor real_div_16 = real_div(x = concat_165, y = shape_177_cast_fp16)[name = string("real_div_16")]; + tensor hidden_states_251_cast_fp16 = tile(reps = real_div_16, x = var_1735_cast_fp16)[name = string("hidden_states_251_cast_fp16")]; + tensor concat_166x = const()[name = string("concat_166x"), val = tensor([1, 24, -1, 128])]; + tensor key_states_35_cast_fp16 = reshape(shape = concat_166x, x = hidden_states_251_cast_fp16)[name = string("key_states_35_cast_fp16")]; + tensor var_1745_shape_cast_fp16 = shape(x = var_1726_cast_fp16)[name = string("op_1745_shape_cast_fp16")]; + int32 gather_161 = const()[name = string("gather_161"), val = int32(1)]; + int32 gather_162 = const()[name = string("gather_162"), val = int32(8)]; + int32 gather_163_axis_0 = const()[name = string("gather_163_axis_0"), val = int32(0)]; + int32 gather_163_batch_dims_0 = const()[name = string("gather_163_batch_dims_0"), val = int32(0)]; + bool gather_163_validate_indices_0 = const()[name = string("gather_163_validate_indices_0"), val = bool(false)]; + string var_1745_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_1745_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_163_to_uint16 = const()[name = string("select_163_to_uint16"), val = uint16(2)]; + tensor var_1745_shape_cast_fp16_to_uint16 = cast(dtype = var_1745_shape_cast_fp16_to_uint16_dtype_0, x = var_1745_shape_cast_fp16)[name = string("cast_156")]; + uint16 gather_163_cast_uint16 = gather(axis = gather_163_axis_0, batch_dims = gather_163_batch_dims_0, indices = select_163_to_uint16, validate_indices = gather_163_validate_indices_0, x = var_1745_shape_cast_fp16_to_uint16)[name = string("gather_163_cast_uint16")]; + string gather_163_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_163_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_164 = const()[name = string("gather_164"), val = int32(128)]; + tensor var_1752_axes_0 = const()[name = string("op_1752_axes_0"), val = tensor([2])]; + tensor var_1752_cast_fp16 = expand_dims(axes = var_1752_axes_0, x = var_1726_cast_fp16)[name = string("op_1752_cast_fp16")]; + tensor shape_182_cast_fp16 = shape(x = var_1752_cast_fp16)[name = string("shape_182_cast_fp16")]; + int32 concat_167_axis_0 = const()[name = string("concat_167_axis_0"), val = int32(0)]; + bool concat_167_interleave_0 = const()[name = string("concat_167_interleave_0"), val = bool(false)]; + int32 gather_163_cast_uint16_to_int32 = cast(dtype = gather_163_cast_uint16_to_int32_dtype_0, x = gather_163_cast_uint16)[name = string("cast_155")]; + tensor concat_167 = concat(axis = concat_167_axis_0, interleave = concat_167_interleave_0, values = (gather_161, gather_162, var_81, gather_163_cast_uint16_to_int32, gather_164))[name = string("concat_167")]; + tensor real_div_17 = real_div(x = concat_167, y = shape_182_cast_fp16)[name = string("real_div_17")]; + tensor hidden_states_255_cast_fp16 = tile(reps = real_div_17, x = var_1752_cast_fp16)[name = string("hidden_states_255_cast_fp16")]; + tensor concat_168x = const()[name = string("concat_168x"), val = tensor([1, 24, -1, 128])]; + tensor value_states_35_cast_fp16 = reshape(shape = concat_168x, x = hidden_states_255_cast_fp16)[name = string("value_states_35_cast_fp16")]; + tensor var_1762_shape_cast_fp16 = shape(x = key_states_35_cast_fp16)[name = string("op_1762_shape_cast_fp16")]; + int32 gather_165_axis_0 = const()[name = string("gather_165_axis_0"), val = int32(0)]; + int32 gather_165_batch_dims_0 = const()[name = string("gather_165_batch_dims_0"), val = int32(0)]; + bool gather_165_validate_indices_0 = const()[name = string("gather_165_validate_indices_0"), val = bool(false)]; + string var_1762_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_1762_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_165_to_uint16 = const()[name = string("select_165_to_uint16"), val = uint16(2)]; + tensor var_1762_shape_cast_fp16_to_uint16 = cast(dtype = var_1762_shape_cast_fp16_to_uint16_dtype_0, x = var_1762_shape_cast_fp16)[name = string("cast_154")]; + uint16 gather_165_cast_uint16 = gather(axis = gather_165_axis_0, batch_dims = gather_165_batch_dims_0, indices = select_165_to_uint16, validate_indices = gather_165_validate_indices_0, x = var_1762_shape_cast_fp16_to_uint16)[name = string("gather_165_cast_uint16")]; + string gather_165_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_165_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 concat_169_values0_0 = const()[name = string("concat_169_values0_0"), val = int32(1)]; + int32 concat_169_values1_0 = const()[name = string("concat_169_values1_0"), val = int32(1)]; + int32 concat_169_values2_0 = const()[name = string("concat_169_values2_0"), val = int32(0)]; + int32 concat_169_axis_0 = const()[name = string("concat_169_axis_0"), val = int32(0)]; + bool concat_169_interleave_0 = const()[name = string("concat_169_interleave_0"), val = bool(false)]; + int32 gather_165_cast_uint16_to_int32 = cast(dtype = gather_165_cast_uint16_to_int32_dtype_0, x = gather_165_cast_uint16)[name = string("cast_153")]; + tensor concat_169 = concat(axis = concat_169_axis_0, interleave = concat_169_interleave_0, values = (concat_169_values0_0, concat_169_values1_0, concat_169_values2_0, gather_165_cast_uint16_to_int32))[name = string("concat_169")]; + tensor causal_mask_19_begin_0 = const()[name = string("causal_mask_19_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor causal_mask_19_end_mask_0 = const()[name = string("causal_mask_19_end_mask_0"), val = tensor([true, true, true, false])]; + tensor causal_mask_19_cast_fp16 = slice_by_index(begin = causal_mask_19_begin_0, end = concat_169, end_mask = causal_mask_19_end_mask_0, x = causal_mask)[name = string("causal_mask_19_cast_fp16")]; + tensor attn_output_33_cast_fp16 = scaled_dot_product_attention(attn_mask = causal_mask_19_cast_fp16, key = key_states_35_cast_fp16, query = query_states_35_cast_fp16, value = value_states_35_cast_fp16)[name = string("attn_output_33_cast_fp16")]; + tensor var_1768_perm_0 = const()[name = string("op_1768_perm_0"), val = tensor([0, 2, 1, 3])]; + int32 concat_170_axis_0 = const()[name = string("concat_170_axis_0"), val = int32(0)]; + bool concat_170_interleave_0 = const()[name = string("concat_170_interleave_0"), val = bool(false)]; + int32 gather_149_cast_uint16_to_int32 = cast(dtype = gather_149_cast_uint16_to_int32_dtype_0, x = gather_149_cast_uint16)[name = string("cast_152")]; + tensor concat_170 = concat(axis = concat_170_axis_0, interleave = concat_170_interleave_0, values = (gather_148, gather_149_cast_uint16_to_int32, var_72))[name = string("concat_170")]; + tensor var_1768_cast_fp16 = transpose(perm = var_1768_perm_0, x = attn_output_33_cast_fp16)[name = string("transpose_76")]; + tensor input_65_cast_fp16 = reshape(shape = concat_170, x = var_1768_cast_fp16)[name = string("input_65_cast_fp16")]; + tensor model_model_layers_8_self_attn_o_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(683596800))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(688315456))))[name = string("model_model_layers_8_self_attn_o_proj_weight_to_fp16_quantized")]; + tensor linear_59_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_8_self_attn_o_proj_weight_to_fp16_quantized, x = input_65_cast_fp16)[name = string("linear_59_cast_fp16")]; + tensor hidden_states_259_cast_fp16 = add(x = hidden_states_239_cast_fp16, y = linear_59_cast_fp16)[name = string("hidden_states_259_cast_fp16")]; + fp16 var_78_promoted_17_to_fp16 = const()[name = string("op_78_promoted_17_to_fp16"), val = fp16(0x1p+1)]; + tensor var_1777_cast_fp16 = pow(x = hidden_states_259_cast_fp16, y = var_78_promoted_17_to_fp16)[name = string("op_1777_cast_fp16")]; + tensor variance_35_axes_0 = const()[name = string("variance_35_axes_0"), val = tensor([-1])]; + bool variance_35_keep_dims_0 = const()[name = string("variance_35_keep_dims_0"), val = bool(true)]; + tensor variance_35_cast_fp16 = reduce_mean(axes = variance_35_axes_0, keep_dims = variance_35_keep_dims_0, x = var_1777_cast_fp16)[name = string("variance_35_cast_fp16")]; + fp16 var_1780_to_fp16 = const()[name = string("op_1780_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_1781_cast_fp16 = add(x = variance_35_cast_fp16, y = var_1780_to_fp16)[name = string("op_1781_cast_fp16")]; + fp32 var_1782_epsilon_0 = const()[name = string("op_1782_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_1782_cast_fp16 = rsqrt(epsilon = var_1782_epsilon_0, x = var_1781_cast_fp16)[name = string("op_1782_cast_fp16")]; + tensor hidden_states_263_cast_fp16 = mul(x = hidden_states_259_cast_fp16, y = var_1782_cast_fp16)[name = string("hidden_states_263_cast_fp16")]; + tensor model_model_layers_8_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_8_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(688905344)))]; + tensor input_67_cast_fp16 = mul(x = model_model_layers_8_post_attention_layernorm_weight_to_fp16, y = hidden_states_263_cast_fp16)[name = string("input_67_cast_fp16")]; + tensor model_model_layers_8_mlp_gate_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(688911552))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(701494528))))[name = string("model_model_layers_8_mlp_gate_proj_weight_to_fp16_quantized")]; + tensor linear_60_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_8_mlp_gate_proj_weight_to_fp16_quantized, x = input_67_cast_fp16)[name = string("linear_60_cast_fp16")]; + tensor var_1794_cast_fp16 = silu(x = linear_60_cast_fp16)[name = string("op_1794_cast_fp16")]; + tensor model_model_layers_8_mlp_up_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(703067456))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(715650432))))[name = string("model_model_layers_8_mlp_up_proj_weight_to_fp16_quantized")]; + tensor linear_61_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_8_mlp_up_proj_weight_to_fp16_quantized, x = input_67_cast_fp16)[name = string("linear_61_cast_fp16")]; + tensor input_71_cast_fp16 = mul(x = var_1794_cast_fp16, y = linear_61_cast_fp16)[name = string("input_71_cast_fp16")]; + tensor model_model_layers_8_mlp_down_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(717223360))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(729806336))))[name = string("model_model_layers_8_mlp_down_proj_weight_to_fp16_quantized")]; + tensor linear_62_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_8_mlp_down_proj_weight_to_fp16_quantized, x = input_71_cast_fp16)[name = string("linear_62_cast_fp16")]; + tensor hidden_states_269_cast_fp16 = add(x = hidden_states_259_cast_fp16, y = linear_62_cast_fp16)[name = string("hidden_states_269_cast_fp16")]; + fp16 var_78_promoted_18_to_fp16 = const()[name = string("op_78_promoted_18_to_fp16"), val = fp16(0x1p+1)]; + tensor var_1807_cast_fp16 = pow(x = hidden_states_269_cast_fp16, y = var_78_promoted_18_to_fp16)[name = string("op_1807_cast_fp16")]; + tensor variance_37_axes_0 = const()[name = string("variance_37_axes_0"), val = tensor([-1])]; + bool variance_37_keep_dims_0 = const()[name = string("variance_37_keep_dims_0"), val = bool(true)]; + tensor variance_37_cast_fp16 = reduce_mean(axes = variance_37_axes_0, keep_dims = variance_37_keep_dims_0, x = var_1807_cast_fp16)[name = string("variance_37_cast_fp16")]; + fp16 var_1810_to_fp16 = const()[name = string("op_1810_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_1811_cast_fp16 = add(x = variance_37_cast_fp16, y = var_1810_to_fp16)[name = string("op_1811_cast_fp16")]; + fp32 var_1812_epsilon_0 = const()[name = string("op_1812_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_1812_cast_fp16 = rsqrt(epsilon = var_1812_epsilon_0, x = var_1811_cast_fp16)[name = string("op_1812_cast_fp16")]; + tensor hidden_states_273_cast_fp16 = mul(x = hidden_states_269_cast_fp16, y = var_1812_cast_fp16)[name = string("hidden_states_273_cast_fp16")]; + tensor model_model_layers_9_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_9_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(731379264)))]; + tensor hidden_states_277_cast_fp16 = mul(x = model_model_layers_9_input_layernorm_weight_to_fp16, y = hidden_states_273_cast_fp16)[name = string("hidden_states_277_cast_fp16")]; + tensor var_1823_shape_cast_fp16 = shape(x = hidden_states_277_cast_fp16)[name = string("op_1823_shape_cast_fp16")]; + int32 gather_166 = const()[name = string("gather_166"), val = int32(1)]; + int32 gather_167_axis_0 = const()[name = string("gather_167_axis_0"), val = int32(0)]; + int32 gather_167_batch_dims_0 = const()[name = string("gather_167_batch_dims_0"), val = int32(0)]; + bool gather_167_validate_indices_0 = const()[name = string("gather_167_validate_indices_0"), val = bool(false)]; + string var_1823_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_1823_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_167_to_uint16 = const()[name = string("select_167_to_uint16"), val = uint16(1)]; + tensor var_1823_shape_cast_fp16_to_uint16 = cast(dtype = var_1823_shape_cast_fp16_to_uint16_dtype_0, x = var_1823_shape_cast_fp16)[name = string("cast_151")]; + uint16 gather_167_cast_uint16 = gather(axis = gather_167_axis_0, batch_dims = gather_167_batch_dims_0, indices = select_167_to_uint16, validate_indices = gather_167_validate_indices_0, x = var_1823_shape_cast_fp16_to_uint16)[name = string("gather_167_cast_uint16")]; + string gather_167_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_167_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor model_model_layers_9_self_attn_q_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(731385472))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(736104128))))[name = string("model_model_layers_9_self_attn_q_proj_weight_to_fp16_quantized")]; + tensor linear_63_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_9_self_attn_q_proj_weight_to_fp16_quantized, x = hidden_states_277_cast_fp16)[name = string("linear_63_cast_fp16")]; + tensor model_model_layers_9_self_attn_k_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(736694016))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(738266944))))[name = string("model_model_layers_9_self_attn_k_proj_weight_to_fp16_quantized")]; + tensor linear_64_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_9_self_attn_k_proj_weight_to_fp16_quantized, x = hidden_states_277_cast_fp16)[name = string("linear_64_cast_fp16")]; + tensor model_model_layers_9_self_attn_v_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(738463616))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(740036544))))[name = string("model_model_layers_9_self_attn_v_proj_weight_to_fp16_quantized")]; + tensor linear_65_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_9_self_attn_v_proj_weight_to_fp16_quantized, x = hidden_states_277_cast_fp16)[name = string("linear_65_cast_fp16")]; + tensor concat_171x = const()[name = string("concat_171x"), val = tensor([1, -1, 24, 128])]; + tensor var_1832_cast_fp16 = reshape(shape = concat_171x, x = linear_63_cast_fp16)[name = string("op_1832_cast_fp16")]; + tensor q_19_perm_0 = const()[name = string("q_19_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_172x = const()[name = string("concat_172x"), val = tensor([1, -1, 8, 128])]; + tensor var_1835_cast_fp16 = reshape(shape = concat_172x, x = linear_64_cast_fp16)[name = string("op_1835_cast_fp16")]; + tensor k_19_perm_0 = const()[name = string("k_19_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_173x = const()[name = string("concat_173x"), val = tensor([1, -1, 8, 128])]; + tensor var_1838_cast_fp16 = reshape(shape = concat_173x, x = linear_65_cast_fp16)[name = string("op_1838_cast_fp16")]; + tensor v_state_19_perm_0 = const()[name = string("v_state_19_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor q_19_cast_fp16 = transpose(perm = q_19_perm_0, x = var_1832_cast_fp16)[name = string("transpose_75")]; + tensor var_1842_cast_fp16 = mul(x = q_19_cast_fp16, y = cos_7_cast_fp16)[name = string("op_1842_cast_fp16")]; + tensor x1_37_begin_0 = const()[name = string("x1_37_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_37_end_0 = const()[name = string("x1_37_end_0"), val = tensor([1, 24, 0, 64])]; + tensor x1_37_end_mask_0 = const()[name = string("x1_37_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_37_cast_fp16 = slice_by_index(begin = x1_37_begin_0, end = x1_37_end_0, end_mask = x1_37_end_mask_0, x = q_19_cast_fp16)[name = string("x1_37_cast_fp16")]; + tensor x2_37_begin_0 = const()[name = string("x2_37_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_37_end_0 = const()[name = string("x2_37_end_0"), val = tensor([1, 24, 0, 128])]; + tensor x2_37_end_mask_0 = const()[name = string("x2_37_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_37_cast_fp16 = slice_by_index(begin = x2_37_begin_0, end = x2_37_end_0, end_mask = x2_37_end_mask_0, x = q_19_cast_fp16)[name = string("x2_37_cast_fp16")]; + fp16 const_21_promoted_to_fp16 = const()[name = string("const_21_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_1853_cast_fp16 = mul(x = x2_37_cast_fp16, y = const_21_promoted_to_fp16)[name = string("op_1853_cast_fp16")]; + bool var_1855_interleave_0 = const()[name = string("op_1855_interleave_0"), val = bool(false)]; + tensor var_1855_cast_fp16 = concat(axis = var_72, interleave = var_1855_interleave_0, values = (var_1853_cast_fp16, x1_37_cast_fp16))[name = string("op_1855_cast_fp16")]; + tensor var_1856_cast_fp16 = mul(x = var_1855_cast_fp16, y = sin_7_cast_fp16)[name = string("op_1856_cast_fp16")]; + tensor query_states_39_cast_fp16 = add(x = var_1842_cast_fp16, y = var_1856_cast_fp16)[name = string("query_states_39_cast_fp16")]; + tensor k_19_cast_fp16 = transpose(perm = k_19_perm_0, x = var_1835_cast_fp16)[name = string("transpose_74")]; + tensor var_1858_cast_fp16 = mul(x = k_19_cast_fp16, y = cos_7_cast_fp16)[name = string("op_1858_cast_fp16")]; + tensor x1_39_begin_0 = const()[name = string("x1_39_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_39_end_0 = const()[name = string("x1_39_end_0"), val = tensor([1, 8, 0, 64])]; + tensor x1_39_end_mask_0 = const()[name = string("x1_39_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_39_cast_fp16 = slice_by_index(begin = x1_39_begin_0, end = x1_39_end_0, end_mask = x1_39_end_mask_0, x = k_19_cast_fp16)[name = string("x1_39_cast_fp16")]; + tensor x2_39_begin_0 = const()[name = string("x2_39_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_39_end_0 = const()[name = string("x2_39_end_0"), val = tensor([1, 8, 0, 128])]; + tensor x2_39_end_mask_0 = const()[name = string("x2_39_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_39_cast_fp16 = slice_by_index(begin = x2_39_begin_0, end = x2_39_end_0, end_mask = x2_39_end_mask_0, x = k_19_cast_fp16)[name = string("x2_39_cast_fp16")]; + fp16 const_22_promoted_to_fp16 = const()[name = string("const_22_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_1869_cast_fp16 = mul(x = x2_39_cast_fp16, y = const_22_promoted_to_fp16)[name = string("op_1869_cast_fp16")]; + bool var_1871_interleave_0 = const()[name = string("op_1871_interleave_0"), val = bool(false)]; + tensor var_1871_cast_fp16 = concat(axis = var_72, interleave = var_1871_interleave_0, values = (var_1869_cast_fp16, x1_39_cast_fp16))[name = string("op_1871_cast_fp16")]; + tensor var_1872_cast_fp16 = mul(x = var_1871_cast_fp16, y = sin_7_cast_fp16)[name = string("op_1872_cast_fp16")]; + tensor k_state_19_cast_fp16 = add(x = var_1858_cast_fp16, y = var_1872_cast_fp16)[name = string("k_state_19_cast_fp16")]; + tensor expand_dims_108 = const()[name = string("expand_dims_108"), val = tensor([0])]; + tensor expand_dims_109 = const()[name = string("expand_dims_109"), val = tensor([0])]; + tensor expand_dims_111 = const()[name = string("expand_dims_111"), val = tensor([0])]; + tensor concat_176_values0_0 = const()[name = string("concat_176_values0_0"), val = tensor([9])]; + int32 concat_176_axis_0 = const()[name = string("concat_176_axis_0"), val = int32(0)]; + bool concat_176_interleave_0 = const()[name = string("concat_176_interleave_0"), val = bool(false)]; + tensor concat_176 = concat(axis = concat_176_axis_0, interleave = concat_176_interleave_0, values = (concat_176_values0_0, expand_dims_108, expand_dims_109, expand_dims_2, expand_dims_111))[name = string("concat_176")]; + tensor key_cache_internal_tensor_assign_10_stride_0 = const()[name = string("key_cache_internal_tensor_assign_10_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor key_cache_internal_tensor_assign_10_begin_mask_0 = const()[name = string("key_cache_internal_tensor_assign_10_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_10_end_mask_0 = const()[name = string("key_cache_internal_tensor_assign_10_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor key_cache_internal_tensor_assign_10_squeeze_mask_0 = const()[name = string("key_cache_internal_tensor_assign_10_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_10_cast_fp16 = slice_update(begin = concat_176, begin_mask = key_cache_internal_tensor_assign_10_begin_mask_0, end = concat_6, end_mask = key_cache_internal_tensor_assign_10_end_mask_0, squeeze_mask = key_cache_internal_tensor_assign_10_squeeze_mask_0, stride = key_cache_internal_tensor_assign_10_stride_0, update = k_state_19_cast_fp16, x = coreml_update_state_72)[name = string("key_cache_internal_tensor_assign_10_cast_fp16")]; + write_state(data = key_cache_internal_tensor_assign_10_cast_fp16, input = key_cache)[name = string("coreml_update_state_74_write_state")]; + tensor coreml_update_state_74 = read_state(input = key_cache)[name = string("coreml_update_state_74")]; + tensor value_cache_internal_tensor_assign_10_stride_0 = const()[name = string("value_cache_internal_tensor_assign_10_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor value_cache_internal_tensor_assign_10_begin_mask_0 = const()[name = string("value_cache_internal_tensor_assign_10_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor value_cache_internal_tensor_assign_10_end_mask_0 = const()[name = string("value_cache_internal_tensor_assign_10_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor value_cache_internal_tensor_assign_10_squeeze_mask_0 = const()[name = string("value_cache_internal_tensor_assign_10_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor v_state_19_cast_fp16 = transpose(perm = v_state_19_perm_0, x = var_1838_cast_fp16)[name = string("transpose_73")]; + tensor value_cache_internal_tensor_assign_10_cast_fp16 = slice_update(begin = concat_176, begin_mask = value_cache_internal_tensor_assign_10_begin_mask_0, end = concat_6, end_mask = value_cache_internal_tensor_assign_10_end_mask_0, squeeze_mask = value_cache_internal_tensor_assign_10_squeeze_mask_0, stride = value_cache_internal_tensor_assign_10_stride_0, update = v_state_19_cast_fp16, x = coreml_update_state_73)[name = string("value_cache_internal_tensor_assign_10_cast_fp16")]; + write_state(data = value_cache_internal_tensor_assign_10_cast_fp16, input = value_cache)[name = string("coreml_update_state_75_write_state")]; + tensor coreml_update_state_75 = read_state(input = value_cache)[name = string("coreml_update_state_75")]; + tensor var_1895_begin_0 = const()[name = string("op_1895_begin_0"), val = tensor([9, 0, 0, 0, 0])]; + tensor var_1895_end_0 = const()[name = string("op_1895_end_0"), val = tensor([10, 1, 8, 2048, 128])]; + tensor var_1895_end_mask_0 = const()[name = string("op_1895_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_1895_squeeze_mask_0 = const()[name = string("op_1895_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_1895_cast_fp16 = slice_by_index(begin = var_1895_begin_0, end = var_1895_end_0, end_mask = var_1895_end_mask_0, squeeze_mask = var_1895_squeeze_mask_0, x = coreml_update_state_74)[name = string("op_1895_cast_fp16")]; + tensor var_1898_begin_0 = const()[name = string("op_1898_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_1898_end_mask_0 = const()[name = string("op_1898_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_1898_cast_fp16 = slice_by_index(begin = var_1898_begin_0, end = concat_11, end_mask = var_1898_end_mask_0, x = var_1895_cast_fp16)[name = string("op_1898_cast_fp16")]; + tensor var_1900_begin_0 = const()[name = string("op_1900_begin_0"), val = tensor([9, 0, 0, 0, 0])]; + tensor var_1900_end_0 = const()[name = string("op_1900_end_0"), val = tensor([10, 1, 8, 2048, 128])]; + tensor var_1900_end_mask_0 = const()[name = string("op_1900_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_1900_squeeze_mask_0 = const()[name = string("op_1900_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_1900_cast_fp16 = slice_by_index(begin = var_1900_begin_0, end = var_1900_end_0, end_mask = var_1900_end_mask_0, squeeze_mask = var_1900_squeeze_mask_0, x = coreml_update_state_75)[name = string("op_1900_cast_fp16")]; + tensor var_1903_begin_0 = const()[name = string("op_1903_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_1903_end_mask_0 = const()[name = string("op_1903_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_1903_cast_fp16 = slice_by_index(begin = var_1903_begin_0, end = concat_11, end_mask = var_1903_end_mask_0, x = var_1900_cast_fp16)[name = string("op_1903_cast_fp16")]; + tensor var_1905_shape_cast_fp16 = shape(x = var_1898_cast_fp16)[name = string("op_1905_shape_cast_fp16")]; + int32 gather_175 = const()[name = string("gather_175"), val = int32(1)]; + int32 gather_176 = const()[name = string("gather_176"), val = int32(8)]; + int32 gather_177_axis_0 = const()[name = string("gather_177_axis_0"), val = int32(0)]; + int32 gather_177_batch_dims_0 = const()[name = string("gather_177_batch_dims_0"), val = int32(0)]; + bool gather_177_validate_indices_0 = const()[name = string("gather_177_validate_indices_0"), val = bool(false)]; + string var_1905_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_1905_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_177_to_uint16 = const()[name = string("select_177_to_uint16"), val = uint16(2)]; + tensor var_1905_shape_cast_fp16_to_uint16 = cast(dtype = var_1905_shape_cast_fp16_to_uint16_dtype_0, x = var_1905_shape_cast_fp16)[name = string("cast_150")]; + uint16 gather_177_cast_uint16 = gather(axis = gather_177_axis_0, batch_dims = gather_177_batch_dims_0, indices = select_177_to_uint16, validate_indices = gather_177_validate_indices_0, x = var_1905_shape_cast_fp16_to_uint16)[name = string("gather_177_cast_uint16")]; + string gather_177_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_177_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_178 = const()[name = string("gather_178"), val = int32(128)]; + tensor var_1912_axes_0 = const()[name = string("op_1912_axes_0"), val = tensor([2])]; + tensor var_1912_cast_fp16 = expand_dims(axes = var_1912_axes_0, x = var_1898_cast_fp16)[name = string("op_1912_cast_fp16")]; + tensor shape_197_cast_fp16 = shape(x = var_1912_cast_fp16)[name = string("shape_197_cast_fp16")]; + int32 concat_184_axis_0 = const()[name = string("concat_184_axis_0"), val = int32(0)]; + bool concat_184_interleave_0 = const()[name = string("concat_184_interleave_0"), val = bool(false)]; + int32 gather_177_cast_uint16_to_int32 = cast(dtype = gather_177_cast_uint16_to_int32_dtype_0, x = gather_177_cast_uint16)[name = string("cast_149")]; + tensor concat_184 = concat(axis = concat_184_axis_0, interleave = concat_184_interleave_0, values = (gather_175, gather_176, var_81, gather_177_cast_uint16_to_int32, gather_178))[name = string("concat_184")]; + tensor real_div_18 = real_div(x = concat_184, y = shape_197_cast_fp16)[name = string("real_div_18")]; + tensor hidden_states_281_cast_fp16 = tile(reps = real_div_18, x = var_1912_cast_fp16)[name = string("hidden_states_281_cast_fp16")]; + tensor concat_185x = const()[name = string("concat_185x"), val = tensor([1, 24, -1, 128])]; + tensor key_states_39_cast_fp16 = reshape(shape = concat_185x, x = hidden_states_281_cast_fp16)[name = string("key_states_39_cast_fp16")]; + tensor var_1922_shape_cast_fp16 = shape(x = var_1903_cast_fp16)[name = string("op_1922_shape_cast_fp16")]; + int32 gather_179 = const()[name = string("gather_179"), val = int32(1)]; + int32 gather_180 = const()[name = string("gather_180"), val = int32(8)]; + int32 gather_181_axis_0 = const()[name = string("gather_181_axis_0"), val = int32(0)]; + int32 gather_181_batch_dims_0 = const()[name = string("gather_181_batch_dims_0"), val = int32(0)]; + bool gather_181_validate_indices_0 = const()[name = string("gather_181_validate_indices_0"), val = bool(false)]; + string var_1922_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_1922_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_181_to_uint16 = const()[name = string("select_181_to_uint16"), val = uint16(2)]; + tensor var_1922_shape_cast_fp16_to_uint16 = cast(dtype = var_1922_shape_cast_fp16_to_uint16_dtype_0, x = var_1922_shape_cast_fp16)[name = string("cast_148")]; + uint16 gather_181_cast_uint16 = gather(axis = gather_181_axis_0, batch_dims = gather_181_batch_dims_0, indices = select_181_to_uint16, validate_indices = gather_181_validate_indices_0, x = var_1922_shape_cast_fp16_to_uint16)[name = string("gather_181_cast_uint16")]; + string gather_181_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_181_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_182 = const()[name = string("gather_182"), val = int32(128)]; + tensor var_1929_axes_0 = const()[name = string("op_1929_axes_0"), val = tensor([2])]; + tensor var_1929_cast_fp16 = expand_dims(axes = var_1929_axes_0, x = var_1903_cast_fp16)[name = string("op_1929_cast_fp16")]; + tensor shape_202_cast_fp16 = shape(x = var_1929_cast_fp16)[name = string("shape_202_cast_fp16")]; + int32 concat_186_axis_0 = const()[name = string("concat_186_axis_0"), val = int32(0)]; + bool concat_186_interleave_0 = const()[name = string("concat_186_interleave_0"), val = bool(false)]; + int32 gather_181_cast_uint16_to_int32 = cast(dtype = gather_181_cast_uint16_to_int32_dtype_0, x = gather_181_cast_uint16)[name = string("cast_147")]; + tensor concat_186 = concat(axis = concat_186_axis_0, interleave = concat_186_interleave_0, values = (gather_179, gather_180, var_81, gather_181_cast_uint16_to_int32, gather_182))[name = string("concat_186")]; + tensor real_div_19 = real_div(x = concat_186, y = shape_202_cast_fp16)[name = string("real_div_19")]; + tensor hidden_states_285_cast_fp16 = tile(reps = real_div_19, x = var_1929_cast_fp16)[name = string("hidden_states_285_cast_fp16")]; + tensor concat_187x = const()[name = string("concat_187x"), val = tensor([1, 24, -1, 128])]; + tensor value_states_39_cast_fp16 = reshape(shape = concat_187x, x = hidden_states_285_cast_fp16)[name = string("value_states_39_cast_fp16")]; + tensor var_1939_shape_cast_fp16 = shape(x = key_states_39_cast_fp16)[name = string("op_1939_shape_cast_fp16")]; + int32 gather_183_axis_0 = const()[name = string("gather_183_axis_0"), val = int32(0)]; + int32 gather_183_batch_dims_0 = const()[name = string("gather_183_batch_dims_0"), val = int32(0)]; + bool gather_183_validate_indices_0 = const()[name = string("gather_183_validate_indices_0"), val = bool(false)]; + string var_1939_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_1939_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_183_to_uint16 = const()[name = string("select_183_to_uint16"), val = uint16(2)]; + tensor var_1939_shape_cast_fp16_to_uint16 = cast(dtype = var_1939_shape_cast_fp16_to_uint16_dtype_0, x = var_1939_shape_cast_fp16)[name = string("cast_146")]; + uint16 gather_183_cast_uint16 = gather(axis = gather_183_axis_0, batch_dims = gather_183_batch_dims_0, indices = select_183_to_uint16, validate_indices = gather_183_validate_indices_0, x = var_1939_shape_cast_fp16_to_uint16)[name = string("gather_183_cast_uint16")]; + string gather_183_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_183_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 concat_188_values0_0 = const()[name = string("concat_188_values0_0"), val = int32(1)]; + int32 concat_188_values1_0 = const()[name = string("concat_188_values1_0"), val = int32(1)]; + int32 concat_188_values2_0 = const()[name = string("concat_188_values2_0"), val = int32(0)]; + int32 concat_188_axis_0 = const()[name = string("concat_188_axis_0"), val = int32(0)]; + bool concat_188_interleave_0 = const()[name = string("concat_188_interleave_0"), val = bool(false)]; + int32 gather_183_cast_uint16_to_int32 = cast(dtype = gather_183_cast_uint16_to_int32_dtype_0, x = gather_183_cast_uint16)[name = string("cast_145")]; + tensor concat_188 = concat(axis = concat_188_axis_0, interleave = concat_188_interleave_0, values = (concat_188_values0_0, concat_188_values1_0, concat_188_values2_0, gather_183_cast_uint16_to_int32))[name = string("concat_188")]; + tensor causal_mask_21_begin_0 = const()[name = string("causal_mask_21_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor causal_mask_21_end_mask_0 = const()[name = string("causal_mask_21_end_mask_0"), val = tensor([true, true, true, false])]; + tensor causal_mask_21_cast_fp16 = slice_by_index(begin = causal_mask_21_begin_0, end = concat_188, end_mask = causal_mask_21_end_mask_0, x = causal_mask)[name = string("causal_mask_21_cast_fp16")]; + tensor attn_output_37_cast_fp16 = scaled_dot_product_attention(attn_mask = causal_mask_21_cast_fp16, key = key_states_39_cast_fp16, query = query_states_39_cast_fp16, value = value_states_39_cast_fp16)[name = string("attn_output_37_cast_fp16")]; + tensor var_1945_perm_0 = const()[name = string("op_1945_perm_0"), val = tensor([0, 2, 1, 3])]; + int32 concat_189_axis_0 = const()[name = string("concat_189_axis_0"), val = int32(0)]; + bool concat_189_interleave_0 = const()[name = string("concat_189_interleave_0"), val = bool(false)]; + int32 gather_167_cast_uint16_to_int32 = cast(dtype = gather_167_cast_uint16_to_int32_dtype_0, x = gather_167_cast_uint16)[name = string("cast_144")]; + tensor concat_189 = concat(axis = concat_189_axis_0, interleave = concat_189_interleave_0, values = (gather_166, gather_167_cast_uint16_to_int32, var_72))[name = string("concat_189")]; + tensor var_1945_cast_fp16 = transpose(perm = var_1945_perm_0, x = attn_output_37_cast_fp16)[name = string("transpose_72")]; + tensor input_73_cast_fp16 = reshape(shape = concat_189, x = var_1945_cast_fp16)[name = string("input_73_cast_fp16")]; + tensor model_model_layers_9_self_attn_o_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(740233216))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(744951872))))[name = string("model_model_layers_9_self_attn_o_proj_weight_to_fp16_quantized")]; + tensor linear_66_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_9_self_attn_o_proj_weight_to_fp16_quantized, x = input_73_cast_fp16)[name = string("linear_66_cast_fp16")]; + tensor hidden_states_289_cast_fp16 = add(x = hidden_states_269_cast_fp16, y = linear_66_cast_fp16)[name = string("hidden_states_289_cast_fp16")]; + fp16 var_78_promoted_19_to_fp16 = const()[name = string("op_78_promoted_19_to_fp16"), val = fp16(0x1p+1)]; + tensor var_1954_cast_fp16 = pow(x = hidden_states_289_cast_fp16, y = var_78_promoted_19_to_fp16)[name = string("op_1954_cast_fp16")]; + tensor variance_39_axes_0 = const()[name = string("variance_39_axes_0"), val = tensor([-1])]; + bool variance_39_keep_dims_0 = const()[name = string("variance_39_keep_dims_0"), val = bool(true)]; + tensor variance_39_cast_fp16 = reduce_mean(axes = variance_39_axes_0, keep_dims = variance_39_keep_dims_0, x = var_1954_cast_fp16)[name = string("variance_39_cast_fp16")]; + fp16 var_1957_to_fp16 = const()[name = string("op_1957_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_1958_cast_fp16 = add(x = variance_39_cast_fp16, y = var_1957_to_fp16)[name = string("op_1958_cast_fp16")]; + fp32 var_1959_epsilon_0 = const()[name = string("op_1959_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_1959_cast_fp16 = rsqrt(epsilon = var_1959_epsilon_0, x = var_1958_cast_fp16)[name = string("op_1959_cast_fp16")]; + tensor hidden_states_293_cast_fp16 = mul(x = hidden_states_289_cast_fp16, y = var_1959_cast_fp16)[name = string("hidden_states_293_cast_fp16")]; + tensor model_model_layers_9_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_9_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(745541760)))]; + tensor input_75_cast_fp16 = mul(x = model_model_layers_9_post_attention_layernorm_weight_to_fp16, y = hidden_states_293_cast_fp16)[name = string("input_75_cast_fp16")]; + tensor model_model_layers_9_mlp_gate_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(745547968))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(758130944))))[name = string("model_model_layers_9_mlp_gate_proj_weight_to_fp16_quantized")]; + tensor linear_67_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_9_mlp_gate_proj_weight_to_fp16_quantized, x = input_75_cast_fp16)[name = string("linear_67_cast_fp16")]; + tensor var_1971_cast_fp16 = silu(x = linear_67_cast_fp16)[name = string("op_1971_cast_fp16")]; + tensor model_model_layers_9_mlp_up_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(759703872))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(772286848))))[name = string("model_model_layers_9_mlp_up_proj_weight_to_fp16_quantized")]; + tensor linear_68_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_9_mlp_up_proj_weight_to_fp16_quantized, x = input_75_cast_fp16)[name = string("linear_68_cast_fp16")]; + tensor input_79_cast_fp16 = mul(x = var_1971_cast_fp16, y = linear_68_cast_fp16)[name = string("input_79_cast_fp16")]; + tensor model_model_layers_9_mlp_down_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(773859776))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(786442752))))[name = string("model_model_layers_9_mlp_down_proj_weight_to_fp16_quantized")]; + tensor linear_69_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_9_mlp_down_proj_weight_to_fp16_quantized, x = input_79_cast_fp16)[name = string("linear_69_cast_fp16")]; + tensor hidden_states_299_cast_fp16 = add(x = hidden_states_289_cast_fp16, y = linear_69_cast_fp16)[name = string("hidden_states_299_cast_fp16")]; + fp16 var_78_promoted_20_to_fp16 = const()[name = string("op_78_promoted_20_to_fp16"), val = fp16(0x1p+1)]; + tensor var_1984_cast_fp16 = pow(x = hidden_states_299_cast_fp16, y = var_78_promoted_20_to_fp16)[name = string("op_1984_cast_fp16")]; + tensor variance_41_axes_0 = const()[name = string("variance_41_axes_0"), val = tensor([-1])]; + bool variance_41_keep_dims_0 = const()[name = string("variance_41_keep_dims_0"), val = bool(true)]; + tensor variance_41_cast_fp16 = reduce_mean(axes = variance_41_axes_0, keep_dims = variance_41_keep_dims_0, x = var_1984_cast_fp16)[name = string("variance_41_cast_fp16")]; + fp16 var_1987_to_fp16 = const()[name = string("op_1987_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_1988_cast_fp16 = add(x = variance_41_cast_fp16, y = var_1987_to_fp16)[name = string("op_1988_cast_fp16")]; + fp32 var_1989_epsilon_0 = const()[name = string("op_1989_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_1989_cast_fp16 = rsqrt(epsilon = var_1989_epsilon_0, x = var_1988_cast_fp16)[name = string("op_1989_cast_fp16")]; + tensor hidden_states_303_cast_fp16 = mul(x = hidden_states_299_cast_fp16, y = var_1989_cast_fp16)[name = string("hidden_states_303_cast_fp16")]; + tensor model_model_layers_10_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_10_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(788015680)))]; + tensor hidden_states_307_cast_fp16 = mul(x = model_model_layers_10_input_layernorm_weight_to_fp16, y = hidden_states_303_cast_fp16)[name = string("hidden_states_307_cast_fp16")]; + tensor var_2000_shape_cast_fp16 = shape(x = hidden_states_307_cast_fp16)[name = string("op_2000_shape_cast_fp16")]; + int32 gather_184 = const()[name = string("gather_184"), val = int32(1)]; + int32 gather_185_axis_0 = const()[name = string("gather_185_axis_0"), val = int32(0)]; + int32 gather_185_batch_dims_0 = const()[name = string("gather_185_batch_dims_0"), val = int32(0)]; + bool gather_185_validate_indices_0 = const()[name = string("gather_185_validate_indices_0"), val = bool(false)]; + string var_2000_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_2000_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_185_to_uint16 = const()[name = string("select_185_to_uint16"), val = uint16(1)]; + tensor var_2000_shape_cast_fp16_to_uint16 = cast(dtype = var_2000_shape_cast_fp16_to_uint16_dtype_0, x = var_2000_shape_cast_fp16)[name = string("cast_143")]; + uint16 gather_185_cast_uint16 = gather(axis = gather_185_axis_0, batch_dims = gather_185_batch_dims_0, indices = select_185_to_uint16, validate_indices = gather_185_validate_indices_0, x = var_2000_shape_cast_fp16_to_uint16)[name = string("gather_185_cast_uint16")]; + string gather_185_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_185_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor model_model_layers_10_self_attn_q_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(788021888))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(792740544))))[name = string("model_model_layers_10_self_attn_q_proj_weight_to_fp16_quantized")]; + tensor linear_70_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_10_self_attn_q_proj_weight_to_fp16_quantized, x = hidden_states_307_cast_fp16)[name = string("linear_70_cast_fp16")]; + tensor model_model_layers_10_self_attn_k_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(793330432))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(794903360))))[name = string("model_model_layers_10_self_attn_k_proj_weight_to_fp16_quantized")]; + tensor linear_71_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_10_self_attn_k_proj_weight_to_fp16_quantized, x = hidden_states_307_cast_fp16)[name = string("linear_71_cast_fp16")]; + tensor model_model_layers_10_self_attn_v_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(795100032))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(796672960))))[name = string("model_model_layers_10_self_attn_v_proj_weight_to_fp16_quantized")]; + tensor linear_72_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_10_self_attn_v_proj_weight_to_fp16_quantized, x = hidden_states_307_cast_fp16)[name = string("linear_72_cast_fp16")]; + tensor concat_190x = const()[name = string("concat_190x"), val = tensor([1, -1, 24, 128])]; + tensor var_2009_cast_fp16 = reshape(shape = concat_190x, x = linear_70_cast_fp16)[name = string("op_2009_cast_fp16")]; + tensor q_21_perm_0 = const()[name = string("q_21_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_191x = const()[name = string("concat_191x"), val = tensor([1, -1, 8, 128])]; + tensor var_2012_cast_fp16 = reshape(shape = concat_191x, x = linear_71_cast_fp16)[name = string("op_2012_cast_fp16")]; + tensor k_21_perm_0 = const()[name = string("k_21_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_192x = const()[name = string("concat_192x"), val = tensor([1, -1, 8, 128])]; + tensor var_2015_cast_fp16 = reshape(shape = concat_192x, x = linear_72_cast_fp16)[name = string("op_2015_cast_fp16")]; + tensor v_state_21_perm_0 = const()[name = string("v_state_21_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor q_21_cast_fp16 = transpose(perm = q_21_perm_0, x = var_2009_cast_fp16)[name = string("transpose_71")]; + tensor var_2019_cast_fp16 = mul(x = q_21_cast_fp16, y = cos_7_cast_fp16)[name = string("op_2019_cast_fp16")]; + tensor x1_41_begin_0 = const()[name = string("x1_41_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_41_end_0 = const()[name = string("x1_41_end_0"), val = tensor([1, 24, 0, 64])]; + tensor x1_41_end_mask_0 = const()[name = string("x1_41_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_41_cast_fp16 = slice_by_index(begin = x1_41_begin_0, end = x1_41_end_0, end_mask = x1_41_end_mask_0, x = q_21_cast_fp16)[name = string("x1_41_cast_fp16")]; + tensor x2_41_begin_0 = const()[name = string("x2_41_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_41_end_0 = const()[name = string("x2_41_end_0"), val = tensor([1, 24, 0, 128])]; + tensor x2_41_end_mask_0 = const()[name = string("x2_41_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_41_cast_fp16 = slice_by_index(begin = x2_41_begin_0, end = x2_41_end_0, end_mask = x2_41_end_mask_0, x = q_21_cast_fp16)[name = string("x2_41_cast_fp16")]; + fp16 const_23_promoted_to_fp16 = const()[name = string("const_23_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_2030_cast_fp16 = mul(x = x2_41_cast_fp16, y = const_23_promoted_to_fp16)[name = string("op_2030_cast_fp16")]; + bool var_2032_interleave_0 = const()[name = string("op_2032_interleave_0"), val = bool(false)]; + tensor var_2032_cast_fp16 = concat(axis = var_72, interleave = var_2032_interleave_0, values = (var_2030_cast_fp16, x1_41_cast_fp16))[name = string("op_2032_cast_fp16")]; + tensor var_2033_cast_fp16 = mul(x = var_2032_cast_fp16, y = sin_7_cast_fp16)[name = string("op_2033_cast_fp16")]; + tensor query_states_43_cast_fp16 = add(x = var_2019_cast_fp16, y = var_2033_cast_fp16)[name = string("query_states_43_cast_fp16")]; + tensor k_21_cast_fp16 = transpose(perm = k_21_perm_0, x = var_2012_cast_fp16)[name = string("transpose_70")]; + tensor var_2035_cast_fp16 = mul(x = k_21_cast_fp16, y = cos_7_cast_fp16)[name = string("op_2035_cast_fp16")]; + tensor x1_43_begin_0 = const()[name = string("x1_43_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_43_end_0 = const()[name = string("x1_43_end_0"), val = tensor([1, 8, 0, 64])]; + tensor x1_43_end_mask_0 = const()[name = string("x1_43_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_43_cast_fp16 = slice_by_index(begin = x1_43_begin_0, end = x1_43_end_0, end_mask = x1_43_end_mask_0, x = k_21_cast_fp16)[name = string("x1_43_cast_fp16")]; + tensor x2_43_begin_0 = const()[name = string("x2_43_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_43_end_0 = const()[name = string("x2_43_end_0"), val = tensor([1, 8, 0, 128])]; + tensor x2_43_end_mask_0 = const()[name = string("x2_43_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_43_cast_fp16 = slice_by_index(begin = x2_43_begin_0, end = x2_43_end_0, end_mask = x2_43_end_mask_0, x = k_21_cast_fp16)[name = string("x2_43_cast_fp16")]; + fp16 const_24_promoted_to_fp16 = const()[name = string("const_24_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_2046_cast_fp16 = mul(x = x2_43_cast_fp16, y = const_24_promoted_to_fp16)[name = string("op_2046_cast_fp16")]; + bool var_2048_interleave_0 = const()[name = string("op_2048_interleave_0"), val = bool(false)]; + tensor var_2048_cast_fp16 = concat(axis = var_72, interleave = var_2048_interleave_0, values = (var_2046_cast_fp16, x1_43_cast_fp16))[name = string("op_2048_cast_fp16")]; + tensor var_2049_cast_fp16 = mul(x = var_2048_cast_fp16, y = sin_7_cast_fp16)[name = string("op_2049_cast_fp16")]; + tensor k_state_21_cast_fp16 = add(x = var_2035_cast_fp16, y = var_2049_cast_fp16)[name = string("k_state_21_cast_fp16")]; + tensor expand_dims_120 = const()[name = string("expand_dims_120"), val = tensor([0])]; + tensor expand_dims_121 = const()[name = string("expand_dims_121"), val = tensor([0])]; + tensor expand_dims_123 = const()[name = string("expand_dims_123"), val = tensor([0])]; + tensor concat_195_values0_0 = const()[name = string("concat_195_values0_0"), val = tensor([10])]; + int32 concat_195_axis_0 = const()[name = string("concat_195_axis_0"), val = int32(0)]; + bool concat_195_interleave_0 = const()[name = string("concat_195_interleave_0"), val = bool(false)]; + tensor concat_195 = concat(axis = concat_195_axis_0, interleave = concat_195_interleave_0, values = (concat_195_values0_0, expand_dims_120, expand_dims_121, expand_dims_2, expand_dims_123))[name = string("concat_195")]; + tensor key_cache_internal_tensor_assign_11_stride_0 = const()[name = string("key_cache_internal_tensor_assign_11_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor key_cache_internal_tensor_assign_11_begin_mask_0 = const()[name = string("key_cache_internal_tensor_assign_11_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_11_end_mask_0 = const()[name = string("key_cache_internal_tensor_assign_11_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor key_cache_internal_tensor_assign_11_squeeze_mask_0 = const()[name = string("key_cache_internal_tensor_assign_11_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_11_cast_fp16 = slice_update(begin = concat_195, begin_mask = key_cache_internal_tensor_assign_11_begin_mask_0, end = concat_6, end_mask = key_cache_internal_tensor_assign_11_end_mask_0, squeeze_mask = key_cache_internal_tensor_assign_11_squeeze_mask_0, stride = key_cache_internal_tensor_assign_11_stride_0, update = k_state_21_cast_fp16, x = coreml_update_state_74)[name = string("key_cache_internal_tensor_assign_11_cast_fp16")]; + write_state(data = key_cache_internal_tensor_assign_11_cast_fp16, input = key_cache)[name = string("coreml_update_state_76_write_state")]; + tensor coreml_update_state_76 = read_state(input = key_cache)[name = string("coreml_update_state_76")]; + tensor value_cache_internal_tensor_assign_11_stride_0 = const()[name = string("value_cache_internal_tensor_assign_11_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor value_cache_internal_tensor_assign_11_begin_mask_0 = const()[name = string("value_cache_internal_tensor_assign_11_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor value_cache_internal_tensor_assign_11_end_mask_0 = const()[name = string("value_cache_internal_tensor_assign_11_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor value_cache_internal_tensor_assign_11_squeeze_mask_0 = const()[name = string("value_cache_internal_tensor_assign_11_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor v_state_21_cast_fp16 = transpose(perm = v_state_21_perm_0, x = var_2015_cast_fp16)[name = string("transpose_69")]; + tensor value_cache_internal_tensor_assign_11_cast_fp16 = slice_update(begin = concat_195, begin_mask = value_cache_internal_tensor_assign_11_begin_mask_0, end = concat_6, end_mask = value_cache_internal_tensor_assign_11_end_mask_0, squeeze_mask = value_cache_internal_tensor_assign_11_squeeze_mask_0, stride = value_cache_internal_tensor_assign_11_stride_0, update = v_state_21_cast_fp16, x = coreml_update_state_75)[name = string("value_cache_internal_tensor_assign_11_cast_fp16")]; + write_state(data = value_cache_internal_tensor_assign_11_cast_fp16, input = value_cache)[name = string("coreml_update_state_77_write_state")]; + tensor coreml_update_state_77 = read_state(input = value_cache)[name = string("coreml_update_state_77")]; + tensor var_2072_begin_0 = const()[name = string("op_2072_begin_0"), val = tensor([10, 0, 0, 0, 0])]; + tensor var_2072_end_0 = const()[name = string("op_2072_end_0"), val = tensor([11, 1, 8, 2048, 128])]; + tensor var_2072_end_mask_0 = const()[name = string("op_2072_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_2072_squeeze_mask_0 = const()[name = string("op_2072_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_2072_cast_fp16 = slice_by_index(begin = var_2072_begin_0, end = var_2072_end_0, end_mask = var_2072_end_mask_0, squeeze_mask = var_2072_squeeze_mask_0, x = coreml_update_state_76)[name = string("op_2072_cast_fp16")]; + tensor var_2075_begin_0 = const()[name = string("op_2075_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_2075_end_mask_0 = const()[name = string("op_2075_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_2075_cast_fp16 = slice_by_index(begin = var_2075_begin_0, end = concat_11, end_mask = var_2075_end_mask_0, x = var_2072_cast_fp16)[name = string("op_2075_cast_fp16")]; + tensor var_2077_begin_0 = const()[name = string("op_2077_begin_0"), val = tensor([10, 0, 0, 0, 0])]; + tensor var_2077_end_0 = const()[name = string("op_2077_end_0"), val = tensor([11, 1, 8, 2048, 128])]; + tensor var_2077_end_mask_0 = const()[name = string("op_2077_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_2077_squeeze_mask_0 = const()[name = string("op_2077_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_2077_cast_fp16 = slice_by_index(begin = var_2077_begin_0, end = var_2077_end_0, end_mask = var_2077_end_mask_0, squeeze_mask = var_2077_squeeze_mask_0, x = coreml_update_state_77)[name = string("op_2077_cast_fp16")]; + tensor var_2080_begin_0 = const()[name = string("op_2080_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_2080_end_mask_0 = const()[name = string("op_2080_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_2080_cast_fp16 = slice_by_index(begin = var_2080_begin_0, end = concat_11, end_mask = var_2080_end_mask_0, x = var_2077_cast_fp16)[name = string("op_2080_cast_fp16")]; + tensor var_2082_shape_cast_fp16 = shape(x = var_2075_cast_fp16)[name = string("op_2082_shape_cast_fp16")]; + int32 gather_193 = const()[name = string("gather_193"), val = int32(1)]; + int32 gather_194 = const()[name = string("gather_194"), val = int32(8)]; + int32 gather_195_axis_0 = const()[name = string("gather_195_axis_0"), val = int32(0)]; + int32 gather_195_batch_dims_0 = const()[name = string("gather_195_batch_dims_0"), val = int32(0)]; + bool gather_195_validate_indices_0 = const()[name = string("gather_195_validate_indices_0"), val = bool(false)]; + string var_2082_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_2082_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_195_to_uint16 = const()[name = string("select_195_to_uint16"), val = uint16(2)]; + tensor var_2082_shape_cast_fp16_to_uint16 = cast(dtype = var_2082_shape_cast_fp16_to_uint16_dtype_0, x = var_2082_shape_cast_fp16)[name = string("cast_142")]; + uint16 gather_195_cast_uint16 = gather(axis = gather_195_axis_0, batch_dims = gather_195_batch_dims_0, indices = select_195_to_uint16, validate_indices = gather_195_validate_indices_0, x = var_2082_shape_cast_fp16_to_uint16)[name = string("gather_195_cast_uint16")]; + string gather_195_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_195_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_196 = const()[name = string("gather_196"), val = int32(128)]; + tensor var_2089_axes_0 = const()[name = string("op_2089_axes_0"), val = tensor([2])]; + tensor var_2089_cast_fp16 = expand_dims(axes = var_2089_axes_0, x = var_2075_cast_fp16)[name = string("op_2089_cast_fp16")]; + tensor shape_217_cast_fp16 = shape(x = var_2089_cast_fp16)[name = string("shape_217_cast_fp16")]; + int32 concat_203_axis_0 = const()[name = string("concat_203_axis_0"), val = int32(0)]; + bool concat_203_interleave_0 = const()[name = string("concat_203_interleave_0"), val = bool(false)]; + int32 gather_195_cast_uint16_to_int32 = cast(dtype = gather_195_cast_uint16_to_int32_dtype_0, x = gather_195_cast_uint16)[name = string("cast_141")]; + tensor concat_203 = concat(axis = concat_203_axis_0, interleave = concat_203_interleave_0, values = (gather_193, gather_194, var_81, gather_195_cast_uint16_to_int32, gather_196))[name = string("concat_203")]; + tensor real_div_20 = real_div(x = concat_203, y = shape_217_cast_fp16)[name = string("real_div_20")]; + tensor hidden_states_311_cast_fp16 = tile(reps = real_div_20, x = var_2089_cast_fp16)[name = string("hidden_states_311_cast_fp16")]; + tensor concat_204x = const()[name = string("concat_204x"), val = tensor([1, 24, -1, 128])]; + tensor key_states_43_cast_fp16 = reshape(shape = concat_204x, x = hidden_states_311_cast_fp16)[name = string("key_states_43_cast_fp16")]; + tensor var_2099_shape_cast_fp16 = shape(x = var_2080_cast_fp16)[name = string("op_2099_shape_cast_fp16")]; + int32 gather_197 = const()[name = string("gather_197"), val = int32(1)]; + int32 gather_198 = const()[name = string("gather_198"), val = int32(8)]; + int32 gather_199_axis_0 = const()[name = string("gather_199_axis_0"), val = int32(0)]; + int32 gather_199_batch_dims_0 = const()[name = string("gather_199_batch_dims_0"), val = int32(0)]; + bool gather_199_validate_indices_0 = const()[name = string("gather_199_validate_indices_0"), val = bool(false)]; + string var_2099_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_2099_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_199_to_uint16 = const()[name = string("select_199_to_uint16"), val = uint16(2)]; + tensor var_2099_shape_cast_fp16_to_uint16 = cast(dtype = var_2099_shape_cast_fp16_to_uint16_dtype_0, x = var_2099_shape_cast_fp16)[name = string("cast_140")]; + uint16 gather_199_cast_uint16 = gather(axis = gather_199_axis_0, batch_dims = gather_199_batch_dims_0, indices = select_199_to_uint16, validate_indices = gather_199_validate_indices_0, x = var_2099_shape_cast_fp16_to_uint16)[name = string("gather_199_cast_uint16")]; + string gather_199_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_199_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_200 = const()[name = string("gather_200"), val = int32(128)]; + tensor var_2106_axes_0 = const()[name = string("op_2106_axes_0"), val = tensor([2])]; + tensor var_2106_cast_fp16 = expand_dims(axes = var_2106_axes_0, x = var_2080_cast_fp16)[name = string("op_2106_cast_fp16")]; + tensor shape_222_cast_fp16 = shape(x = var_2106_cast_fp16)[name = string("shape_222_cast_fp16")]; + int32 concat_205_axis_0 = const()[name = string("concat_205_axis_0"), val = int32(0)]; + bool concat_205_interleave_0 = const()[name = string("concat_205_interleave_0"), val = bool(false)]; + int32 gather_199_cast_uint16_to_int32 = cast(dtype = gather_199_cast_uint16_to_int32_dtype_0, x = gather_199_cast_uint16)[name = string("cast_139")]; + tensor concat_205 = concat(axis = concat_205_axis_0, interleave = concat_205_interleave_0, values = (gather_197, gather_198, var_81, gather_199_cast_uint16_to_int32, gather_200))[name = string("concat_205")]; + tensor real_div_21 = real_div(x = concat_205, y = shape_222_cast_fp16)[name = string("real_div_21")]; + tensor hidden_states_315_cast_fp16 = tile(reps = real_div_21, x = var_2106_cast_fp16)[name = string("hidden_states_315_cast_fp16")]; + tensor concat_206x = const()[name = string("concat_206x"), val = tensor([1, 24, -1, 128])]; + tensor value_states_43_cast_fp16 = reshape(shape = concat_206x, x = hidden_states_315_cast_fp16)[name = string("value_states_43_cast_fp16")]; + tensor var_2116_shape_cast_fp16 = shape(x = key_states_43_cast_fp16)[name = string("op_2116_shape_cast_fp16")]; + int32 gather_201_axis_0 = const()[name = string("gather_201_axis_0"), val = int32(0)]; + int32 gather_201_batch_dims_0 = const()[name = string("gather_201_batch_dims_0"), val = int32(0)]; + bool gather_201_validate_indices_0 = const()[name = string("gather_201_validate_indices_0"), val = bool(false)]; + string var_2116_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_2116_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_201_to_uint16 = const()[name = string("select_201_to_uint16"), val = uint16(2)]; + tensor var_2116_shape_cast_fp16_to_uint16 = cast(dtype = var_2116_shape_cast_fp16_to_uint16_dtype_0, x = var_2116_shape_cast_fp16)[name = string("cast_138")]; + uint16 gather_201_cast_uint16 = gather(axis = gather_201_axis_0, batch_dims = gather_201_batch_dims_0, indices = select_201_to_uint16, validate_indices = gather_201_validate_indices_0, x = var_2116_shape_cast_fp16_to_uint16)[name = string("gather_201_cast_uint16")]; + string gather_201_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_201_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 concat_207_values0_0 = const()[name = string("concat_207_values0_0"), val = int32(1)]; + int32 concat_207_values1_0 = const()[name = string("concat_207_values1_0"), val = int32(1)]; + int32 concat_207_values2_0 = const()[name = string("concat_207_values2_0"), val = int32(0)]; + int32 concat_207_axis_0 = const()[name = string("concat_207_axis_0"), val = int32(0)]; + bool concat_207_interleave_0 = const()[name = string("concat_207_interleave_0"), val = bool(false)]; + int32 gather_201_cast_uint16_to_int32 = cast(dtype = gather_201_cast_uint16_to_int32_dtype_0, x = gather_201_cast_uint16)[name = string("cast_137")]; + tensor concat_207 = concat(axis = concat_207_axis_0, interleave = concat_207_interleave_0, values = (concat_207_values0_0, concat_207_values1_0, concat_207_values2_0, gather_201_cast_uint16_to_int32))[name = string("concat_207")]; + tensor causal_mask_23_begin_0 = const()[name = string("causal_mask_23_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor causal_mask_23_end_mask_0 = const()[name = string("causal_mask_23_end_mask_0"), val = tensor([true, true, true, false])]; + tensor causal_mask_23_cast_fp16 = slice_by_index(begin = causal_mask_23_begin_0, end = concat_207, end_mask = causal_mask_23_end_mask_0, x = causal_mask)[name = string("causal_mask_23_cast_fp16")]; + tensor attn_output_41_cast_fp16 = scaled_dot_product_attention(attn_mask = causal_mask_23_cast_fp16, key = key_states_43_cast_fp16, query = query_states_43_cast_fp16, value = value_states_43_cast_fp16)[name = string("attn_output_41_cast_fp16")]; + tensor var_2122_perm_0 = const()[name = string("op_2122_perm_0"), val = tensor([0, 2, 1, 3])]; + int32 concat_208_axis_0 = const()[name = string("concat_208_axis_0"), val = int32(0)]; + bool concat_208_interleave_0 = const()[name = string("concat_208_interleave_0"), val = bool(false)]; + int32 gather_185_cast_uint16_to_int32 = cast(dtype = gather_185_cast_uint16_to_int32_dtype_0, x = gather_185_cast_uint16)[name = string("cast_136")]; + tensor concat_208 = concat(axis = concat_208_axis_0, interleave = concat_208_interleave_0, values = (gather_184, gather_185_cast_uint16_to_int32, var_72))[name = string("concat_208")]; + tensor var_2122_cast_fp16 = transpose(perm = var_2122_perm_0, x = attn_output_41_cast_fp16)[name = string("transpose_68")]; + tensor input_81_cast_fp16 = reshape(shape = concat_208, x = var_2122_cast_fp16)[name = string("input_81_cast_fp16")]; + tensor model_model_layers_10_self_attn_o_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(796869632))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(801588288))))[name = string("model_model_layers_10_self_attn_o_proj_weight_to_fp16_quantized")]; + tensor linear_73_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_10_self_attn_o_proj_weight_to_fp16_quantized, x = input_81_cast_fp16)[name = string("linear_73_cast_fp16")]; + tensor hidden_states_319_cast_fp16 = add(x = hidden_states_299_cast_fp16, y = linear_73_cast_fp16)[name = string("hidden_states_319_cast_fp16")]; + fp16 var_78_promoted_21_to_fp16 = const()[name = string("op_78_promoted_21_to_fp16"), val = fp16(0x1p+1)]; + tensor var_2131_cast_fp16 = pow(x = hidden_states_319_cast_fp16, y = var_78_promoted_21_to_fp16)[name = string("op_2131_cast_fp16")]; + tensor variance_43_axes_0 = const()[name = string("variance_43_axes_0"), val = tensor([-1])]; + bool variance_43_keep_dims_0 = const()[name = string("variance_43_keep_dims_0"), val = bool(true)]; + tensor variance_43_cast_fp16 = reduce_mean(axes = variance_43_axes_0, keep_dims = variance_43_keep_dims_0, x = var_2131_cast_fp16)[name = string("variance_43_cast_fp16")]; + fp16 var_2134_to_fp16 = const()[name = string("op_2134_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_2135_cast_fp16 = add(x = variance_43_cast_fp16, y = var_2134_to_fp16)[name = string("op_2135_cast_fp16")]; + fp32 var_2136_epsilon_0 = const()[name = string("op_2136_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_2136_cast_fp16 = rsqrt(epsilon = var_2136_epsilon_0, x = var_2135_cast_fp16)[name = string("op_2136_cast_fp16")]; + tensor hidden_states_323_cast_fp16 = mul(x = hidden_states_319_cast_fp16, y = var_2136_cast_fp16)[name = string("hidden_states_323_cast_fp16")]; + tensor model_model_layers_10_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_10_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(802178176)))]; + tensor input_83_cast_fp16 = mul(x = model_model_layers_10_post_attention_layernorm_weight_to_fp16, y = hidden_states_323_cast_fp16)[name = string("input_83_cast_fp16")]; + tensor model_model_layers_10_mlp_gate_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(802184384))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(814767360))))[name = string("model_model_layers_10_mlp_gate_proj_weight_to_fp16_quantized")]; + tensor linear_74_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_10_mlp_gate_proj_weight_to_fp16_quantized, x = input_83_cast_fp16)[name = string("linear_74_cast_fp16")]; + tensor var_2148_cast_fp16 = silu(x = linear_74_cast_fp16)[name = string("op_2148_cast_fp16")]; + tensor model_model_layers_10_mlp_up_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(816340288))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(828923264))))[name = string("model_model_layers_10_mlp_up_proj_weight_to_fp16_quantized")]; + tensor linear_75_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_10_mlp_up_proj_weight_to_fp16_quantized, x = input_83_cast_fp16)[name = string("linear_75_cast_fp16")]; + tensor input_87_cast_fp16 = mul(x = var_2148_cast_fp16, y = linear_75_cast_fp16)[name = string("input_87_cast_fp16")]; + tensor model_model_layers_10_mlp_down_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(830496192))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(843079168))))[name = string("model_model_layers_10_mlp_down_proj_weight_to_fp16_quantized")]; + tensor linear_76_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_10_mlp_down_proj_weight_to_fp16_quantized, x = input_87_cast_fp16)[name = string("linear_76_cast_fp16")]; + tensor hidden_states_329_cast_fp16 = add(x = hidden_states_319_cast_fp16, y = linear_76_cast_fp16)[name = string("hidden_states_329_cast_fp16")]; + fp16 var_78_promoted_22_to_fp16 = const()[name = string("op_78_promoted_22_to_fp16"), val = fp16(0x1p+1)]; + tensor var_2161_cast_fp16 = pow(x = hidden_states_329_cast_fp16, y = var_78_promoted_22_to_fp16)[name = string("op_2161_cast_fp16")]; + tensor variance_45_axes_0 = const()[name = string("variance_45_axes_0"), val = tensor([-1])]; + bool variance_45_keep_dims_0 = const()[name = string("variance_45_keep_dims_0"), val = bool(true)]; + tensor variance_45_cast_fp16 = reduce_mean(axes = variance_45_axes_0, keep_dims = variance_45_keep_dims_0, x = var_2161_cast_fp16)[name = string("variance_45_cast_fp16")]; + fp16 var_2164_to_fp16 = const()[name = string("op_2164_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_2165_cast_fp16 = add(x = variance_45_cast_fp16, y = var_2164_to_fp16)[name = string("op_2165_cast_fp16")]; + fp32 var_2166_epsilon_0 = const()[name = string("op_2166_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_2166_cast_fp16 = rsqrt(epsilon = var_2166_epsilon_0, x = var_2165_cast_fp16)[name = string("op_2166_cast_fp16")]; + tensor hidden_states_333_cast_fp16 = mul(x = hidden_states_329_cast_fp16, y = var_2166_cast_fp16)[name = string("hidden_states_333_cast_fp16")]; + tensor model_model_layers_11_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_11_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(844652096)))]; + tensor hidden_states_337_cast_fp16 = mul(x = model_model_layers_11_input_layernorm_weight_to_fp16, y = hidden_states_333_cast_fp16)[name = string("hidden_states_337_cast_fp16")]; + tensor var_2177_shape_cast_fp16 = shape(x = hidden_states_337_cast_fp16)[name = string("op_2177_shape_cast_fp16")]; + int32 gather_202 = const()[name = string("gather_202"), val = int32(1)]; + int32 gather_203_axis_0 = const()[name = string("gather_203_axis_0"), val = int32(0)]; + int32 gather_203_batch_dims_0 = const()[name = string("gather_203_batch_dims_0"), val = int32(0)]; + bool gather_203_validate_indices_0 = const()[name = string("gather_203_validate_indices_0"), val = bool(false)]; + string var_2177_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_2177_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_203_to_uint16 = const()[name = string("select_203_to_uint16"), val = uint16(1)]; + tensor var_2177_shape_cast_fp16_to_uint16 = cast(dtype = var_2177_shape_cast_fp16_to_uint16_dtype_0, x = var_2177_shape_cast_fp16)[name = string("cast_135")]; + uint16 gather_203_cast_uint16 = gather(axis = gather_203_axis_0, batch_dims = gather_203_batch_dims_0, indices = select_203_to_uint16, validate_indices = gather_203_validate_indices_0, x = var_2177_shape_cast_fp16_to_uint16)[name = string("gather_203_cast_uint16")]; + string gather_203_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_203_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor model_model_layers_11_self_attn_q_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(844658304))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(849376960))))[name = string("model_model_layers_11_self_attn_q_proj_weight_to_fp16_quantized")]; + tensor linear_77_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_11_self_attn_q_proj_weight_to_fp16_quantized, x = hidden_states_337_cast_fp16)[name = string("linear_77_cast_fp16")]; + tensor model_model_layers_11_self_attn_k_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(849966848))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(851539776))))[name = string("model_model_layers_11_self_attn_k_proj_weight_to_fp16_quantized")]; + tensor linear_78_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_11_self_attn_k_proj_weight_to_fp16_quantized, x = hidden_states_337_cast_fp16)[name = string("linear_78_cast_fp16")]; + tensor model_model_layers_11_self_attn_v_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(851736448))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(853309376))))[name = string("model_model_layers_11_self_attn_v_proj_weight_to_fp16_quantized")]; + tensor linear_79_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_11_self_attn_v_proj_weight_to_fp16_quantized, x = hidden_states_337_cast_fp16)[name = string("linear_79_cast_fp16")]; + tensor concat_209x = const()[name = string("concat_209x"), val = tensor([1, -1, 24, 128])]; + tensor var_2186_cast_fp16 = reshape(shape = concat_209x, x = linear_77_cast_fp16)[name = string("op_2186_cast_fp16")]; + tensor q_23_perm_0 = const()[name = string("q_23_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_210x = const()[name = string("concat_210x"), val = tensor([1, -1, 8, 128])]; + tensor var_2189_cast_fp16 = reshape(shape = concat_210x, x = linear_78_cast_fp16)[name = string("op_2189_cast_fp16")]; + tensor k_23_perm_0 = const()[name = string("k_23_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_211x = const()[name = string("concat_211x"), val = tensor([1, -1, 8, 128])]; + tensor var_2192_cast_fp16 = reshape(shape = concat_211x, x = linear_79_cast_fp16)[name = string("op_2192_cast_fp16")]; + tensor v_state_23_perm_0 = const()[name = string("v_state_23_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor q_23_cast_fp16 = transpose(perm = q_23_perm_0, x = var_2186_cast_fp16)[name = string("transpose_67")]; + tensor var_2196_cast_fp16 = mul(x = q_23_cast_fp16, y = cos_7_cast_fp16)[name = string("op_2196_cast_fp16")]; + tensor x1_45_begin_0 = const()[name = string("x1_45_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_45_end_0 = const()[name = string("x1_45_end_0"), val = tensor([1, 24, 0, 64])]; + tensor x1_45_end_mask_0 = const()[name = string("x1_45_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_45_cast_fp16 = slice_by_index(begin = x1_45_begin_0, end = x1_45_end_0, end_mask = x1_45_end_mask_0, x = q_23_cast_fp16)[name = string("x1_45_cast_fp16")]; + tensor x2_45_begin_0 = const()[name = string("x2_45_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_45_end_0 = const()[name = string("x2_45_end_0"), val = tensor([1, 24, 0, 128])]; + tensor x2_45_end_mask_0 = const()[name = string("x2_45_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_45_cast_fp16 = slice_by_index(begin = x2_45_begin_0, end = x2_45_end_0, end_mask = x2_45_end_mask_0, x = q_23_cast_fp16)[name = string("x2_45_cast_fp16")]; + fp16 const_25_promoted_to_fp16 = const()[name = string("const_25_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_2207_cast_fp16 = mul(x = x2_45_cast_fp16, y = const_25_promoted_to_fp16)[name = string("op_2207_cast_fp16")]; + bool var_2209_interleave_0 = const()[name = string("op_2209_interleave_0"), val = bool(false)]; + tensor var_2209_cast_fp16 = concat(axis = var_72, interleave = var_2209_interleave_0, values = (var_2207_cast_fp16, x1_45_cast_fp16))[name = string("op_2209_cast_fp16")]; + tensor var_2210_cast_fp16 = mul(x = var_2209_cast_fp16, y = sin_7_cast_fp16)[name = string("op_2210_cast_fp16")]; + tensor query_states_47_cast_fp16 = add(x = var_2196_cast_fp16, y = var_2210_cast_fp16)[name = string("query_states_47_cast_fp16")]; + tensor k_23_cast_fp16 = transpose(perm = k_23_perm_0, x = var_2189_cast_fp16)[name = string("transpose_66")]; + tensor var_2212_cast_fp16 = mul(x = k_23_cast_fp16, y = cos_7_cast_fp16)[name = string("op_2212_cast_fp16")]; + tensor x1_47_begin_0 = const()[name = string("x1_47_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_47_end_0 = const()[name = string("x1_47_end_0"), val = tensor([1, 8, 0, 64])]; + tensor x1_47_end_mask_0 = const()[name = string("x1_47_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_47_cast_fp16 = slice_by_index(begin = x1_47_begin_0, end = x1_47_end_0, end_mask = x1_47_end_mask_0, x = k_23_cast_fp16)[name = string("x1_47_cast_fp16")]; + tensor x2_47_begin_0 = const()[name = string("x2_47_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_47_end_0 = const()[name = string("x2_47_end_0"), val = tensor([1, 8, 0, 128])]; + tensor x2_47_end_mask_0 = const()[name = string("x2_47_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_47_cast_fp16 = slice_by_index(begin = x2_47_begin_0, end = x2_47_end_0, end_mask = x2_47_end_mask_0, x = k_23_cast_fp16)[name = string("x2_47_cast_fp16")]; + fp16 const_26_promoted_to_fp16 = const()[name = string("const_26_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_2223_cast_fp16 = mul(x = x2_47_cast_fp16, y = const_26_promoted_to_fp16)[name = string("op_2223_cast_fp16")]; + bool var_2225_interleave_0 = const()[name = string("op_2225_interleave_0"), val = bool(false)]; + tensor var_2225_cast_fp16 = concat(axis = var_72, interleave = var_2225_interleave_0, values = (var_2223_cast_fp16, x1_47_cast_fp16))[name = string("op_2225_cast_fp16")]; + tensor var_2226_cast_fp16 = mul(x = var_2225_cast_fp16, y = sin_7_cast_fp16)[name = string("op_2226_cast_fp16")]; + tensor k_state_23_cast_fp16 = add(x = var_2212_cast_fp16, y = var_2226_cast_fp16)[name = string("k_state_23_cast_fp16")]; + tensor expand_dims_132 = const()[name = string("expand_dims_132"), val = tensor([0])]; + tensor expand_dims_133 = const()[name = string("expand_dims_133"), val = tensor([0])]; + tensor expand_dims_135 = const()[name = string("expand_dims_135"), val = tensor([0])]; + tensor concat_214_values0_0 = const()[name = string("concat_214_values0_0"), val = tensor([11])]; + int32 concat_214_axis_0 = const()[name = string("concat_214_axis_0"), val = int32(0)]; + bool concat_214_interleave_0 = const()[name = string("concat_214_interleave_0"), val = bool(false)]; + tensor concat_214 = concat(axis = concat_214_axis_0, interleave = concat_214_interleave_0, values = (concat_214_values0_0, expand_dims_132, expand_dims_133, expand_dims_2, expand_dims_135))[name = string("concat_214")]; + tensor key_cache_internal_tensor_assign_12_stride_0 = const()[name = string("key_cache_internal_tensor_assign_12_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor key_cache_internal_tensor_assign_12_begin_mask_0 = const()[name = string("key_cache_internal_tensor_assign_12_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_12_end_mask_0 = const()[name = string("key_cache_internal_tensor_assign_12_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor key_cache_internal_tensor_assign_12_squeeze_mask_0 = const()[name = string("key_cache_internal_tensor_assign_12_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_12_cast_fp16 = slice_update(begin = concat_214, begin_mask = key_cache_internal_tensor_assign_12_begin_mask_0, end = concat_6, end_mask = key_cache_internal_tensor_assign_12_end_mask_0, squeeze_mask = key_cache_internal_tensor_assign_12_squeeze_mask_0, stride = key_cache_internal_tensor_assign_12_stride_0, update = k_state_23_cast_fp16, x = coreml_update_state_76)[name = string("key_cache_internal_tensor_assign_12_cast_fp16")]; + write_state(data = key_cache_internal_tensor_assign_12_cast_fp16, input = key_cache)[name = string("coreml_update_state_78_write_state")]; + tensor coreml_update_state_78 = read_state(input = key_cache)[name = string("coreml_update_state_78")]; + tensor value_cache_internal_tensor_assign_12_stride_0 = const()[name = string("value_cache_internal_tensor_assign_12_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor value_cache_internal_tensor_assign_12_begin_mask_0 = const()[name = string("value_cache_internal_tensor_assign_12_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor value_cache_internal_tensor_assign_12_end_mask_0 = const()[name = string("value_cache_internal_tensor_assign_12_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor value_cache_internal_tensor_assign_12_squeeze_mask_0 = const()[name = string("value_cache_internal_tensor_assign_12_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor v_state_23_cast_fp16 = transpose(perm = v_state_23_perm_0, x = var_2192_cast_fp16)[name = string("transpose_65")]; + tensor value_cache_internal_tensor_assign_12_cast_fp16 = slice_update(begin = concat_214, begin_mask = value_cache_internal_tensor_assign_12_begin_mask_0, end = concat_6, end_mask = value_cache_internal_tensor_assign_12_end_mask_0, squeeze_mask = value_cache_internal_tensor_assign_12_squeeze_mask_0, stride = value_cache_internal_tensor_assign_12_stride_0, update = v_state_23_cast_fp16, x = coreml_update_state_77)[name = string("value_cache_internal_tensor_assign_12_cast_fp16")]; + write_state(data = value_cache_internal_tensor_assign_12_cast_fp16, input = value_cache)[name = string("coreml_update_state_79_write_state")]; + tensor coreml_update_state_79 = read_state(input = value_cache)[name = string("coreml_update_state_79")]; + tensor var_2249_begin_0 = const()[name = string("op_2249_begin_0"), val = tensor([11, 0, 0, 0, 0])]; + tensor var_2249_end_0 = const()[name = string("op_2249_end_0"), val = tensor([12, 1, 8, 2048, 128])]; + tensor var_2249_end_mask_0 = const()[name = string("op_2249_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_2249_squeeze_mask_0 = const()[name = string("op_2249_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_2249_cast_fp16 = slice_by_index(begin = var_2249_begin_0, end = var_2249_end_0, end_mask = var_2249_end_mask_0, squeeze_mask = var_2249_squeeze_mask_0, x = coreml_update_state_78)[name = string("op_2249_cast_fp16")]; + tensor var_2252_begin_0 = const()[name = string("op_2252_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_2252_end_mask_0 = const()[name = string("op_2252_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_2252_cast_fp16 = slice_by_index(begin = var_2252_begin_0, end = concat_11, end_mask = var_2252_end_mask_0, x = var_2249_cast_fp16)[name = string("op_2252_cast_fp16")]; + tensor var_2254_begin_0 = const()[name = string("op_2254_begin_0"), val = tensor([11, 0, 0, 0, 0])]; + tensor var_2254_end_0 = const()[name = string("op_2254_end_0"), val = tensor([12, 1, 8, 2048, 128])]; + tensor var_2254_end_mask_0 = const()[name = string("op_2254_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_2254_squeeze_mask_0 = const()[name = string("op_2254_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_2254_cast_fp16 = slice_by_index(begin = var_2254_begin_0, end = var_2254_end_0, end_mask = var_2254_end_mask_0, squeeze_mask = var_2254_squeeze_mask_0, x = coreml_update_state_79)[name = string("op_2254_cast_fp16")]; + tensor var_2257_begin_0 = const()[name = string("op_2257_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_2257_end_mask_0 = const()[name = string("op_2257_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_2257_cast_fp16 = slice_by_index(begin = var_2257_begin_0, end = concat_11, end_mask = var_2257_end_mask_0, x = var_2254_cast_fp16)[name = string("op_2257_cast_fp16")]; + tensor var_2259_shape_cast_fp16 = shape(x = var_2252_cast_fp16)[name = string("op_2259_shape_cast_fp16")]; + int32 gather_211 = const()[name = string("gather_211"), val = int32(1)]; + int32 gather_212 = const()[name = string("gather_212"), val = int32(8)]; + int32 gather_213_axis_0 = const()[name = string("gather_213_axis_0"), val = int32(0)]; + int32 gather_213_batch_dims_0 = const()[name = string("gather_213_batch_dims_0"), val = int32(0)]; + bool gather_213_validate_indices_0 = const()[name = string("gather_213_validate_indices_0"), val = bool(false)]; + string var_2259_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_2259_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_213_to_uint16 = const()[name = string("select_213_to_uint16"), val = uint16(2)]; + tensor var_2259_shape_cast_fp16_to_uint16 = cast(dtype = var_2259_shape_cast_fp16_to_uint16_dtype_0, x = var_2259_shape_cast_fp16)[name = string("cast_134")]; + uint16 gather_213_cast_uint16 = gather(axis = gather_213_axis_0, batch_dims = gather_213_batch_dims_0, indices = select_213_to_uint16, validate_indices = gather_213_validate_indices_0, x = var_2259_shape_cast_fp16_to_uint16)[name = string("gather_213_cast_uint16")]; + string gather_213_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_213_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_214 = const()[name = string("gather_214"), val = int32(128)]; + tensor var_2266_axes_0 = const()[name = string("op_2266_axes_0"), val = tensor([2])]; + tensor var_2266_cast_fp16 = expand_dims(axes = var_2266_axes_0, x = var_2252_cast_fp16)[name = string("op_2266_cast_fp16")]; + tensor shape_237_cast_fp16 = shape(x = var_2266_cast_fp16)[name = string("shape_237_cast_fp16")]; + int32 concat_222_axis_0 = const()[name = string("concat_222_axis_0"), val = int32(0)]; + bool concat_222_interleave_0 = const()[name = string("concat_222_interleave_0"), val = bool(false)]; + int32 gather_213_cast_uint16_to_int32 = cast(dtype = gather_213_cast_uint16_to_int32_dtype_0, x = gather_213_cast_uint16)[name = string("cast_133")]; + tensor concat_222 = concat(axis = concat_222_axis_0, interleave = concat_222_interleave_0, values = (gather_211, gather_212, var_81, gather_213_cast_uint16_to_int32, gather_214))[name = string("concat_222")]; + tensor real_div_22 = real_div(x = concat_222, y = shape_237_cast_fp16)[name = string("real_div_22")]; + tensor hidden_states_341_cast_fp16 = tile(reps = real_div_22, x = var_2266_cast_fp16)[name = string("hidden_states_341_cast_fp16")]; + tensor concat_223x = const()[name = string("concat_223x"), val = tensor([1, 24, -1, 128])]; + tensor key_states_47_cast_fp16 = reshape(shape = concat_223x, x = hidden_states_341_cast_fp16)[name = string("key_states_47_cast_fp16")]; + tensor var_2276_shape_cast_fp16 = shape(x = var_2257_cast_fp16)[name = string("op_2276_shape_cast_fp16")]; + int32 gather_215 = const()[name = string("gather_215"), val = int32(1)]; + int32 gather_216 = const()[name = string("gather_216"), val = int32(8)]; + int32 gather_217_axis_0 = const()[name = string("gather_217_axis_0"), val = int32(0)]; + int32 gather_217_batch_dims_0 = const()[name = string("gather_217_batch_dims_0"), val = int32(0)]; + bool gather_217_validate_indices_0 = const()[name = string("gather_217_validate_indices_0"), val = bool(false)]; + string var_2276_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_2276_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_217_to_uint16 = const()[name = string("select_217_to_uint16"), val = uint16(2)]; + tensor var_2276_shape_cast_fp16_to_uint16 = cast(dtype = var_2276_shape_cast_fp16_to_uint16_dtype_0, x = var_2276_shape_cast_fp16)[name = string("cast_132")]; + uint16 gather_217_cast_uint16 = gather(axis = gather_217_axis_0, batch_dims = gather_217_batch_dims_0, indices = select_217_to_uint16, validate_indices = gather_217_validate_indices_0, x = var_2276_shape_cast_fp16_to_uint16)[name = string("gather_217_cast_uint16")]; + string gather_217_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_217_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_218 = const()[name = string("gather_218"), val = int32(128)]; + tensor var_2283_axes_0 = const()[name = string("op_2283_axes_0"), val = tensor([2])]; + tensor var_2283_cast_fp16 = expand_dims(axes = var_2283_axes_0, x = var_2257_cast_fp16)[name = string("op_2283_cast_fp16")]; + tensor shape_242_cast_fp16 = shape(x = var_2283_cast_fp16)[name = string("shape_242_cast_fp16")]; + int32 concat_224_axis_0 = const()[name = string("concat_224_axis_0"), val = int32(0)]; + bool concat_224_interleave_0 = const()[name = string("concat_224_interleave_0"), val = bool(false)]; + int32 gather_217_cast_uint16_to_int32 = cast(dtype = gather_217_cast_uint16_to_int32_dtype_0, x = gather_217_cast_uint16)[name = string("cast_131")]; + tensor concat_224 = concat(axis = concat_224_axis_0, interleave = concat_224_interleave_0, values = (gather_215, gather_216, var_81, gather_217_cast_uint16_to_int32, gather_218))[name = string("concat_224")]; + tensor real_div_23 = real_div(x = concat_224, y = shape_242_cast_fp16)[name = string("real_div_23")]; + tensor hidden_states_345_cast_fp16 = tile(reps = real_div_23, x = var_2283_cast_fp16)[name = string("hidden_states_345_cast_fp16")]; + tensor concat_225x = const()[name = string("concat_225x"), val = tensor([1, 24, -1, 128])]; + tensor value_states_47_cast_fp16 = reshape(shape = concat_225x, x = hidden_states_345_cast_fp16)[name = string("value_states_47_cast_fp16")]; + tensor var_2293_shape_cast_fp16 = shape(x = key_states_47_cast_fp16)[name = string("op_2293_shape_cast_fp16")]; + int32 gather_219_axis_0 = const()[name = string("gather_219_axis_0"), val = int32(0)]; + int32 gather_219_batch_dims_0 = const()[name = string("gather_219_batch_dims_0"), val = int32(0)]; + bool gather_219_validate_indices_0 = const()[name = string("gather_219_validate_indices_0"), val = bool(false)]; + string var_2293_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_2293_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_219_to_uint16 = const()[name = string("select_219_to_uint16"), val = uint16(2)]; + tensor var_2293_shape_cast_fp16_to_uint16 = cast(dtype = var_2293_shape_cast_fp16_to_uint16_dtype_0, x = var_2293_shape_cast_fp16)[name = string("cast_130")]; + uint16 gather_219_cast_uint16 = gather(axis = gather_219_axis_0, batch_dims = gather_219_batch_dims_0, indices = select_219_to_uint16, validate_indices = gather_219_validate_indices_0, x = var_2293_shape_cast_fp16_to_uint16)[name = string("gather_219_cast_uint16")]; + string gather_219_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_219_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 concat_226_values0_0 = const()[name = string("concat_226_values0_0"), val = int32(1)]; + int32 concat_226_values1_0 = const()[name = string("concat_226_values1_0"), val = int32(1)]; + int32 concat_226_values2_0 = const()[name = string("concat_226_values2_0"), val = int32(0)]; + int32 concat_226_axis_0 = const()[name = string("concat_226_axis_0"), val = int32(0)]; + bool concat_226_interleave_0 = const()[name = string("concat_226_interleave_0"), val = bool(false)]; + int32 gather_219_cast_uint16_to_int32 = cast(dtype = gather_219_cast_uint16_to_int32_dtype_0, x = gather_219_cast_uint16)[name = string("cast_129")]; + tensor concat_226 = concat(axis = concat_226_axis_0, interleave = concat_226_interleave_0, values = (concat_226_values0_0, concat_226_values1_0, concat_226_values2_0, gather_219_cast_uint16_to_int32))[name = string("concat_226")]; + tensor causal_mask_25_begin_0 = const()[name = string("causal_mask_25_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor causal_mask_25_end_mask_0 = const()[name = string("causal_mask_25_end_mask_0"), val = tensor([true, true, true, false])]; + tensor causal_mask_25_cast_fp16 = slice_by_index(begin = causal_mask_25_begin_0, end = concat_226, end_mask = causal_mask_25_end_mask_0, x = causal_mask)[name = string("causal_mask_25_cast_fp16")]; + tensor attn_output_45_cast_fp16 = scaled_dot_product_attention(attn_mask = causal_mask_25_cast_fp16, key = key_states_47_cast_fp16, query = query_states_47_cast_fp16, value = value_states_47_cast_fp16)[name = string("attn_output_45_cast_fp16")]; + tensor var_2299_perm_0 = const()[name = string("op_2299_perm_0"), val = tensor([0, 2, 1, 3])]; + int32 concat_227_axis_0 = const()[name = string("concat_227_axis_0"), val = int32(0)]; + bool concat_227_interleave_0 = const()[name = string("concat_227_interleave_0"), val = bool(false)]; + int32 gather_203_cast_uint16_to_int32 = cast(dtype = gather_203_cast_uint16_to_int32_dtype_0, x = gather_203_cast_uint16)[name = string("cast_128")]; + tensor concat_227 = concat(axis = concat_227_axis_0, interleave = concat_227_interleave_0, values = (gather_202, gather_203_cast_uint16_to_int32, var_72))[name = string("concat_227")]; + tensor var_2299_cast_fp16 = transpose(perm = var_2299_perm_0, x = attn_output_45_cast_fp16)[name = string("transpose_64")]; + tensor input_89_cast_fp16 = reshape(shape = concat_227, x = var_2299_cast_fp16)[name = string("input_89_cast_fp16")]; + tensor model_model_layers_11_self_attn_o_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(853506048))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(858224704))))[name = string("model_model_layers_11_self_attn_o_proj_weight_to_fp16_quantized")]; + tensor linear_80_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_11_self_attn_o_proj_weight_to_fp16_quantized, x = input_89_cast_fp16)[name = string("linear_80_cast_fp16")]; + tensor hidden_states_349_cast_fp16 = add(x = hidden_states_329_cast_fp16, y = linear_80_cast_fp16)[name = string("hidden_states_349_cast_fp16")]; + fp16 var_78_promoted_23_to_fp16 = const()[name = string("op_78_promoted_23_to_fp16"), val = fp16(0x1p+1)]; + tensor var_2308_cast_fp16 = pow(x = hidden_states_349_cast_fp16, y = var_78_promoted_23_to_fp16)[name = string("op_2308_cast_fp16")]; + tensor variance_47_axes_0 = const()[name = string("variance_47_axes_0"), val = tensor([-1])]; + bool variance_47_keep_dims_0 = const()[name = string("variance_47_keep_dims_0"), val = bool(true)]; + tensor variance_47_cast_fp16 = reduce_mean(axes = variance_47_axes_0, keep_dims = variance_47_keep_dims_0, x = var_2308_cast_fp16)[name = string("variance_47_cast_fp16")]; + fp16 var_2311_to_fp16 = const()[name = string("op_2311_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_2312_cast_fp16 = add(x = variance_47_cast_fp16, y = var_2311_to_fp16)[name = string("op_2312_cast_fp16")]; + fp32 var_2313_epsilon_0 = const()[name = string("op_2313_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_2313_cast_fp16 = rsqrt(epsilon = var_2313_epsilon_0, x = var_2312_cast_fp16)[name = string("op_2313_cast_fp16")]; + tensor hidden_states_353_cast_fp16 = mul(x = hidden_states_349_cast_fp16, y = var_2313_cast_fp16)[name = string("hidden_states_353_cast_fp16")]; + tensor model_model_layers_11_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_11_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(858814592)))]; + tensor input_91_cast_fp16 = mul(x = model_model_layers_11_post_attention_layernorm_weight_to_fp16, y = hidden_states_353_cast_fp16)[name = string("input_91_cast_fp16")]; + tensor model_model_layers_11_mlp_gate_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(858820800))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(871403776))))[name = string("model_model_layers_11_mlp_gate_proj_weight_to_fp16_quantized")]; + tensor linear_81_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_11_mlp_gate_proj_weight_to_fp16_quantized, x = input_91_cast_fp16)[name = string("linear_81_cast_fp16")]; + tensor var_2325_cast_fp16 = silu(x = linear_81_cast_fp16)[name = string("op_2325_cast_fp16")]; + tensor model_model_layers_11_mlp_up_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(872976704))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(885559680))))[name = string("model_model_layers_11_mlp_up_proj_weight_to_fp16_quantized")]; + tensor linear_82_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_11_mlp_up_proj_weight_to_fp16_quantized, x = input_91_cast_fp16)[name = string("linear_82_cast_fp16")]; + tensor input_95_cast_fp16 = mul(x = var_2325_cast_fp16, y = linear_82_cast_fp16)[name = string("input_95_cast_fp16")]; + tensor model_model_layers_11_mlp_down_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(887132608))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(899715584))))[name = string("model_model_layers_11_mlp_down_proj_weight_to_fp16_quantized")]; + tensor linear_83_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_11_mlp_down_proj_weight_to_fp16_quantized, x = input_95_cast_fp16)[name = string("linear_83_cast_fp16")]; + tensor hidden_states_359_cast_fp16 = add(x = hidden_states_349_cast_fp16, y = linear_83_cast_fp16)[name = string("hidden_states_359_cast_fp16")]; + fp16 var_78_promoted_24_to_fp16 = const()[name = string("op_78_promoted_24_to_fp16"), val = fp16(0x1p+1)]; + tensor var_2338_cast_fp16 = pow(x = hidden_states_359_cast_fp16, y = var_78_promoted_24_to_fp16)[name = string("op_2338_cast_fp16")]; + tensor variance_49_axes_0 = const()[name = string("variance_49_axes_0"), val = tensor([-1])]; + bool variance_49_keep_dims_0 = const()[name = string("variance_49_keep_dims_0"), val = bool(true)]; + tensor variance_49_cast_fp16 = reduce_mean(axes = variance_49_axes_0, keep_dims = variance_49_keep_dims_0, x = var_2338_cast_fp16)[name = string("variance_49_cast_fp16")]; + fp16 var_2341_to_fp16 = const()[name = string("op_2341_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_2342_cast_fp16 = add(x = variance_49_cast_fp16, y = var_2341_to_fp16)[name = string("op_2342_cast_fp16")]; + fp32 var_2343_epsilon_0 = const()[name = string("op_2343_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_2343_cast_fp16 = rsqrt(epsilon = var_2343_epsilon_0, x = var_2342_cast_fp16)[name = string("op_2343_cast_fp16")]; + tensor hidden_states_363_cast_fp16 = mul(x = hidden_states_359_cast_fp16, y = var_2343_cast_fp16)[name = string("hidden_states_363_cast_fp16")]; + tensor model_model_layers_12_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_12_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(901288512)))]; + tensor hidden_states_367_cast_fp16 = mul(x = model_model_layers_12_input_layernorm_weight_to_fp16, y = hidden_states_363_cast_fp16)[name = string("hidden_states_367_cast_fp16")]; + tensor var_2354_shape_cast_fp16 = shape(x = hidden_states_367_cast_fp16)[name = string("op_2354_shape_cast_fp16")]; + int32 gather_220 = const()[name = string("gather_220"), val = int32(1)]; + int32 gather_221_axis_0 = const()[name = string("gather_221_axis_0"), val = int32(0)]; + int32 gather_221_batch_dims_0 = const()[name = string("gather_221_batch_dims_0"), val = int32(0)]; + bool gather_221_validate_indices_0 = const()[name = string("gather_221_validate_indices_0"), val = bool(false)]; + string var_2354_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_2354_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_221_to_uint16 = const()[name = string("select_221_to_uint16"), val = uint16(1)]; + tensor var_2354_shape_cast_fp16_to_uint16 = cast(dtype = var_2354_shape_cast_fp16_to_uint16_dtype_0, x = var_2354_shape_cast_fp16)[name = string("cast_127")]; + uint16 gather_221_cast_uint16 = gather(axis = gather_221_axis_0, batch_dims = gather_221_batch_dims_0, indices = select_221_to_uint16, validate_indices = gather_221_validate_indices_0, x = var_2354_shape_cast_fp16_to_uint16)[name = string("gather_221_cast_uint16")]; + string gather_221_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_221_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor model_model_layers_12_self_attn_q_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(901294720))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(906013376))))[name = string("model_model_layers_12_self_attn_q_proj_weight_to_fp16_quantized")]; + tensor linear_84_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_12_self_attn_q_proj_weight_to_fp16_quantized, x = hidden_states_367_cast_fp16)[name = string("linear_84_cast_fp16")]; + tensor model_model_layers_12_self_attn_k_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(906603264))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(908176192))))[name = string("model_model_layers_12_self_attn_k_proj_weight_to_fp16_quantized")]; + tensor linear_85_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_12_self_attn_k_proj_weight_to_fp16_quantized, x = hidden_states_367_cast_fp16)[name = string("linear_85_cast_fp16")]; + tensor model_model_layers_12_self_attn_v_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(908372864))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(909945792))))[name = string("model_model_layers_12_self_attn_v_proj_weight_to_fp16_quantized")]; + tensor linear_86_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_12_self_attn_v_proj_weight_to_fp16_quantized, x = hidden_states_367_cast_fp16)[name = string("linear_86_cast_fp16")]; + tensor concat_228x = const()[name = string("concat_228x"), val = tensor([1, -1, 24, 128])]; + tensor var_2363_cast_fp16 = reshape(shape = concat_228x, x = linear_84_cast_fp16)[name = string("op_2363_cast_fp16")]; + tensor q_25_perm_0 = const()[name = string("q_25_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_229x = const()[name = string("concat_229x"), val = tensor([1, -1, 8, 128])]; + tensor var_2366_cast_fp16 = reshape(shape = concat_229x, x = linear_85_cast_fp16)[name = string("op_2366_cast_fp16")]; + tensor k_25_perm_0 = const()[name = string("k_25_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_230x = const()[name = string("concat_230x"), val = tensor([1, -1, 8, 128])]; + tensor var_2369_cast_fp16 = reshape(shape = concat_230x, x = linear_86_cast_fp16)[name = string("op_2369_cast_fp16")]; + tensor v_state_25_perm_0 = const()[name = string("v_state_25_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor q_25_cast_fp16 = transpose(perm = q_25_perm_0, x = var_2363_cast_fp16)[name = string("transpose_63")]; + tensor var_2373_cast_fp16 = mul(x = q_25_cast_fp16, y = cos_7_cast_fp16)[name = string("op_2373_cast_fp16")]; + tensor x1_49_begin_0 = const()[name = string("x1_49_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_49_end_0 = const()[name = string("x1_49_end_0"), val = tensor([1, 24, 0, 64])]; + tensor x1_49_end_mask_0 = const()[name = string("x1_49_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_49_cast_fp16 = slice_by_index(begin = x1_49_begin_0, end = x1_49_end_0, end_mask = x1_49_end_mask_0, x = q_25_cast_fp16)[name = string("x1_49_cast_fp16")]; + tensor x2_49_begin_0 = const()[name = string("x2_49_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_49_end_0 = const()[name = string("x2_49_end_0"), val = tensor([1, 24, 0, 128])]; + tensor x2_49_end_mask_0 = const()[name = string("x2_49_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_49_cast_fp16 = slice_by_index(begin = x2_49_begin_0, end = x2_49_end_0, end_mask = x2_49_end_mask_0, x = q_25_cast_fp16)[name = string("x2_49_cast_fp16")]; + fp16 const_27_promoted_to_fp16 = const()[name = string("const_27_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_2384_cast_fp16 = mul(x = x2_49_cast_fp16, y = const_27_promoted_to_fp16)[name = string("op_2384_cast_fp16")]; + bool var_2386_interleave_0 = const()[name = string("op_2386_interleave_0"), val = bool(false)]; + tensor var_2386_cast_fp16 = concat(axis = var_72, interleave = var_2386_interleave_0, values = (var_2384_cast_fp16, x1_49_cast_fp16))[name = string("op_2386_cast_fp16")]; + tensor var_2387_cast_fp16 = mul(x = var_2386_cast_fp16, y = sin_7_cast_fp16)[name = string("op_2387_cast_fp16")]; + tensor query_states_51_cast_fp16 = add(x = var_2373_cast_fp16, y = var_2387_cast_fp16)[name = string("query_states_51_cast_fp16")]; + tensor k_25_cast_fp16 = transpose(perm = k_25_perm_0, x = var_2366_cast_fp16)[name = string("transpose_62")]; + tensor var_2389_cast_fp16 = mul(x = k_25_cast_fp16, y = cos_7_cast_fp16)[name = string("op_2389_cast_fp16")]; + tensor x1_51_begin_0 = const()[name = string("x1_51_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_51_end_0 = const()[name = string("x1_51_end_0"), val = tensor([1, 8, 0, 64])]; + tensor x1_51_end_mask_0 = const()[name = string("x1_51_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_51_cast_fp16 = slice_by_index(begin = x1_51_begin_0, end = x1_51_end_0, end_mask = x1_51_end_mask_0, x = k_25_cast_fp16)[name = string("x1_51_cast_fp16")]; + tensor x2_51_begin_0 = const()[name = string("x2_51_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_51_end_0 = const()[name = string("x2_51_end_0"), val = tensor([1, 8, 0, 128])]; + tensor x2_51_end_mask_0 = const()[name = string("x2_51_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_51_cast_fp16 = slice_by_index(begin = x2_51_begin_0, end = x2_51_end_0, end_mask = x2_51_end_mask_0, x = k_25_cast_fp16)[name = string("x2_51_cast_fp16")]; + fp16 const_28_promoted_to_fp16 = const()[name = string("const_28_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_2400_cast_fp16 = mul(x = x2_51_cast_fp16, y = const_28_promoted_to_fp16)[name = string("op_2400_cast_fp16")]; + bool var_2402_interleave_0 = const()[name = string("op_2402_interleave_0"), val = bool(false)]; + tensor var_2402_cast_fp16 = concat(axis = var_72, interleave = var_2402_interleave_0, values = (var_2400_cast_fp16, x1_51_cast_fp16))[name = string("op_2402_cast_fp16")]; + tensor var_2403_cast_fp16 = mul(x = var_2402_cast_fp16, y = sin_7_cast_fp16)[name = string("op_2403_cast_fp16")]; + tensor k_state_25_cast_fp16 = add(x = var_2389_cast_fp16, y = var_2403_cast_fp16)[name = string("k_state_25_cast_fp16")]; + tensor expand_dims_144 = const()[name = string("expand_dims_144"), val = tensor([0])]; + tensor expand_dims_145 = const()[name = string("expand_dims_145"), val = tensor([0])]; + tensor expand_dims_147 = const()[name = string("expand_dims_147"), val = tensor([0])]; + tensor concat_233_values0_0 = const()[name = string("concat_233_values0_0"), val = tensor([12])]; + int32 concat_233_axis_0 = const()[name = string("concat_233_axis_0"), val = int32(0)]; + bool concat_233_interleave_0 = const()[name = string("concat_233_interleave_0"), val = bool(false)]; + tensor concat_233 = concat(axis = concat_233_axis_0, interleave = concat_233_interleave_0, values = (concat_233_values0_0, expand_dims_144, expand_dims_145, expand_dims_2, expand_dims_147))[name = string("concat_233")]; + tensor key_cache_internal_tensor_assign_13_stride_0 = const()[name = string("key_cache_internal_tensor_assign_13_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor key_cache_internal_tensor_assign_13_begin_mask_0 = const()[name = string("key_cache_internal_tensor_assign_13_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_13_end_mask_0 = const()[name = string("key_cache_internal_tensor_assign_13_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor key_cache_internal_tensor_assign_13_squeeze_mask_0 = const()[name = string("key_cache_internal_tensor_assign_13_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_13_cast_fp16 = slice_update(begin = concat_233, begin_mask = key_cache_internal_tensor_assign_13_begin_mask_0, end = concat_6, end_mask = key_cache_internal_tensor_assign_13_end_mask_0, squeeze_mask = key_cache_internal_tensor_assign_13_squeeze_mask_0, stride = key_cache_internal_tensor_assign_13_stride_0, update = k_state_25_cast_fp16, x = coreml_update_state_78)[name = string("key_cache_internal_tensor_assign_13_cast_fp16")]; + write_state(data = key_cache_internal_tensor_assign_13_cast_fp16, input = key_cache)[name = string("coreml_update_state_80_write_state")]; + tensor coreml_update_state_80 = read_state(input = key_cache)[name = string("coreml_update_state_80")]; + tensor value_cache_internal_tensor_assign_13_stride_0 = const()[name = string("value_cache_internal_tensor_assign_13_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor value_cache_internal_tensor_assign_13_begin_mask_0 = const()[name = string("value_cache_internal_tensor_assign_13_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor value_cache_internal_tensor_assign_13_end_mask_0 = const()[name = string("value_cache_internal_tensor_assign_13_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor value_cache_internal_tensor_assign_13_squeeze_mask_0 = const()[name = string("value_cache_internal_tensor_assign_13_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor v_state_25_cast_fp16 = transpose(perm = v_state_25_perm_0, x = var_2369_cast_fp16)[name = string("transpose_61")]; + tensor value_cache_internal_tensor_assign_13_cast_fp16 = slice_update(begin = concat_233, begin_mask = value_cache_internal_tensor_assign_13_begin_mask_0, end = concat_6, end_mask = value_cache_internal_tensor_assign_13_end_mask_0, squeeze_mask = value_cache_internal_tensor_assign_13_squeeze_mask_0, stride = value_cache_internal_tensor_assign_13_stride_0, update = v_state_25_cast_fp16, x = coreml_update_state_79)[name = string("value_cache_internal_tensor_assign_13_cast_fp16")]; + write_state(data = value_cache_internal_tensor_assign_13_cast_fp16, input = value_cache)[name = string("coreml_update_state_81_write_state")]; + tensor coreml_update_state_81 = read_state(input = value_cache)[name = string("coreml_update_state_81")]; + tensor var_2426_begin_0 = const()[name = string("op_2426_begin_0"), val = tensor([12, 0, 0, 0, 0])]; + tensor var_2426_end_0 = const()[name = string("op_2426_end_0"), val = tensor([13, 1, 8, 2048, 128])]; + tensor var_2426_end_mask_0 = const()[name = string("op_2426_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_2426_squeeze_mask_0 = const()[name = string("op_2426_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_2426_cast_fp16 = slice_by_index(begin = var_2426_begin_0, end = var_2426_end_0, end_mask = var_2426_end_mask_0, squeeze_mask = var_2426_squeeze_mask_0, x = coreml_update_state_80)[name = string("op_2426_cast_fp16")]; + tensor var_2429_begin_0 = const()[name = string("op_2429_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_2429_end_mask_0 = const()[name = string("op_2429_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_2429_cast_fp16 = slice_by_index(begin = var_2429_begin_0, end = concat_11, end_mask = var_2429_end_mask_0, x = var_2426_cast_fp16)[name = string("op_2429_cast_fp16")]; + tensor var_2431_begin_0 = const()[name = string("op_2431_begin_0"), val = tensor([12, 0, 0, 0, 0])]; + tensor var_2431_end_0 = const()[name = string("op_2431_end_0"), val = tensor([13, 1, 8, 2048, 128])]; + tensor var_2431_end_mask_0 = const()[name = string("op_2431_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_2431_squeeze_mask_0 = const()[name = string("op_2431_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_2431_cast_fp16 = slice_by_index(begin = var_2431_begin_0, end = var_2431_end_0, end_mask = var_2431_end_mask_0, squeeze_mask = var_2431_squeeze_mask_0, x = coreml_update_state_81)[name = string("op_2431_cast_fp16")]; + tensor var_2434_begin_0 = const()[name = string("op_2434_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_2434_end_mask_0 = const()[name = string("op_2434_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_2434_cast_fp16 = slice_by_index(begin = var_2434_begin_0, end = concat_11, end_mask = var_2434_end_mask_0, x = var_2431_cast_fp16)[name = string("op_2434_cast_fp16")]; + tensor var_2436_shape_cast_fp16 = shape(x = var_2429_cast_fp16)[name = string("op_2436_shape_cast_fp16")]; + int32 gather_229 = const()[name = string("gather_229"), val = int32(1)]; + int32 gather_230 = const()[name = string("gather_230"), val = int32(8)]; + int32 gather_231_axis_0 = const()[name = string("gather_231_axis_0"), val = int32(0)]; + int32 gather_231_batch_dims_0 = const()[name = string("gather_231_batch_dims_0"), val = int32(0)]; + bool gather_231_validate_indices_0 = const()[name = string("gather_231_validate_indices_0"), val = bool(false)]; + string var_2436_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_2436_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_231_to_uint16 = const()[name = string("select_231_to_uint16"), val = uint16(2)]; + tensor var_2436_shape_cast_fp16_to_uint16 = cast(dtype = var_2436_shape_cast_fp16_to_uint16_dtype_0, x = var_2436_shape_cast_fp16)[name = string("cast_126")]; + uint16 gather_231_cast_uint16 = gather(axis = gather_231_axis_0, batch_dims = gather_231_batch_dims_0, indices = select_231_to_uint16, validate_indices = gather_231_validate_indices_0, x = var_2436_shape_cast_fp16_to_uint16)[name = string("gather_231_cast_uint16")]; + string gather_231_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_231_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_232 = const()[name = string("gather_232"), val = int32(128)]; + tensor var_2443_axes_0 = const()[name = string("op_2443_axes_0"), val = tensor([2])]; + tensor var_2443_cast_fp16 = expand_dims(axes = var_2443_axes_0, x = var_2429_cast_fp16)[name = string("op_2443_cast_fp16")]; + tensor shape_257_cast_fp16 = shape(x = var_2443_cast_fp16)[name = string("shape_257_cast_fp16")]; + int32 concat_241_axis_0 = const()[name = string("concat_241_axis_0"), val = int32(0)]; + bool concat_241_interleave_0 = const()[name = string("concat_241_interleave_0"), val = bool(false)]; + int32 gather_231_cast_uint16_to_int32 = cast(dtype = gather_231_cast_uint16_to_int32_dtype_0, x = gather_231_cast_uint16)[name = string("cast_125")]; + tensor concat_241 = concat(axis = concat_241_axis_0, interleave = concat_241_interleave_0, values = (gather_229, gather_230, var_81, gather_231_cast_uint16_to_int32, gather_232))[name = string("concat_241")]; + tensor real_div_24 = real_div(x = concat_241, y = shape_257_cast_fp16)[name = string("real_div_24")]; + tensor hidden_states_371_cast_fp16 = tile(reps = real_div_24, x = var_2443_cast_fp16)[name = string("hidden_states_371_cast_fp16")]; + tensor concat_242x = const()[name = string("concat_242x"), val = tensor([1, 24, -1, 128])]; + tensor key_states_51_cast_fp16 = reshape(shape = concat_242x, x = hidden_states_371_cast_fp16)[name = string("key_states_51_cast_fp16")]; + tensor var_2453_shape_cast_fp16 = shape(x = var_2434_cast_fp16)[name = string("op_2453_shape_cast_fp16")]; + int32 gather_233 = const()[name = string("gather_233"), val = int32(1)]; + int32 gather_234 = const()[name = string("gather_234"), val = int32(8)]; + int32 gather_235_axis_0 = const()[name = string("gather_235_axis_0"), val = int32(0)]; + int32 gather_235_batch_dims_0 = const()[name = string("gather_235_batch_dims_0"), val = int32(0)]; + bool gather_235_validate_indices_0 = const()[name = string("gather_235_validate_indices_0"), val = bool(false)]; + string var_2453_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_2453_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_235_to_uint16 = const()[name = string("select_235_to_uint16"), val = uint16(2)]; + tensor var_2453_shape_cast_fp16_to_uint16 = cast(dtype = var_2453_shape_cast_fp16_to_uint16_dtype_0, x = var_2453_shape_cast_fp16)[name = string("cast_124")]; + uint16 gather_235_cast_uint16 = gather(axis = gather_235_axis_0, batch_dims = gather_235_batch_dims_0, indices = select_235_to_uint16, validate_indices = gather_235_validate_indices_0, x = var_2453_shape_cast_fp16_to_uint16)[name = string("gather_235_cast_uint16")]; + string gather_235_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_235_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_236 = const()[name = string("gather_236"), val = int32(128)]; + tensor var_2460_axes_0 = const()[name = string("op_2460_axes_0"), val = tensor([2])]; + tensor var_2460_cast_fp16 = expand_dims(axes = var_2460_axes_0, x = var_2434_cast_fp16)[name = string("op_2460_cast_fp16")]; + tensor shape_262_cast_fp16 = shape(x = var_2460_cast_fp16)[name = string("shape_262_cast_fp16")]; + int32 concat_243_axis_0 = const()[name = string("concat_243_axis_0"), val = int32(0)]; + bool concat_243_interleave_0 = const()[name = string("concat_243_interleave_0"), val = bool(false)]; + int32 gather_235_cast_uint16_to_int32 = cast(dtype = gather_235_cast_uint16_to_int32_dtype_0, x = gather_235_cast_uint16)[name = string("cast_123")]; + tensor concat_243 = concat(axis = concat_243_axis_0, interleave = concat_243_interleave_0, values = (gather_233, gather_234, var_81, gather_235_cast_uint16_to_int32, gather_236))[name = string("concat_243")]; + tensor real_div_25 = real_div(x = concat_243, y = shape_262_cast_fp16)[name = string("real_div_25")]; + tensor hidden_states_375_cast_fp16 = tile(reps = real_div_25, x = var_2460_cast_fp16)[name = string("hidden_states_375_cast_fp16")]; + tensor concat_244x = const()[name = string("concat_244x"), val = tensor([1, 24, -1, 128])]; + tensor value_states_51_cast_fp16 = reshape(shape = concat_244x, x = hidden_states_375_cast_fp16)[name = string("value_states_51_cast_fp16")]; + tensor var_2470_shape_cast_fp16 = shape(x = key_states_51_cast_fp16)[name = string("op_2470_shape_cast_fp16")]; + int32 gather_237_axis_0 = const()[name = string("gather_237_axis_0"), val = int32(0)]; + int32 gather_237_batch_dims_0 = const()[name = string("gather_237_batch_dims_0"), val = int32(0)]; + bool gather_237_validate_indices_0 = const()[name = string("gather_237_validate_indices_0"), val = bool(false)]; + string var_2470_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_2470_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_237_to_uint16 = const()[name = string("select_237_to_uint16"), val = uint16(2)]; + tensor var_2470_shape_cast_fp16_to_uint16 = cast(dtype = var_2470_shape_cast_fp16_to_uint16_dtype_0, x = var_2470_shape_cast_fp16)[name = string("cast_122")]; + uint16 gather_237_cast_uint16 = gather(axis = gather_237_axis_0, batch_dims = gather_237_batch_dims_0, indices = select_237_to_uint16, validate_indices = gather_237_validate_indices_0, x = var_2470_shape_cast_fp16_to_uint16)[name = string("gather_237_cast_uint16")]; + string gather_237_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_237_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 concat_245_values0_0 = const()[name = string("concat_245_values0_0"), val = int32(1)]; + int32 concat_245_values1_0 = const()[name = string("concat_245_values1_0"), val = int32(1)]; + int32 concat_245_values2_0 = const()[name = string("concat_245_values2_0"), val = int32(0)]; + int32 concat_245_axis_0 = const()[name = string("concat_245_axis_0"), val = int32(0)]; + bool concat_245_interleave_0 = const()[name = string("concat_245_interleave_0"), val = bool(false)]; + int32 gather_237_cast_uint16_to_int32 = cast(dtype = gather_237_cast_uint16_to_int32_dtype_0, x = gather_237_cast_uint16)[name = string("cast_121")]; + tensor concat_245 = concat(axis = concat_245_axis_0, interleave = concat_245_interleave_0, values = (concat_245_values0_0, concat_245_values1_0, concat_245_values2_0, gather_237_cast_uint16_to_int32))[name = string("concat_245")]; + tensor causal_mask_27_begin_0 = const()[name = string("causal_mask_27_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor causal_mask_27_end_mask_0 = const()[name = string("causal_mask_27_end_mask_0"), val = tensor([true, true, true, false])]; + tensor causal_mask_27_cast_fp16 = slice_by_index(begin = causal_mask_27_begin_0, end = concat_245, end_mask = causal_mask_27_end_mask_0, x = causal_mask)[name = string("causal_mask_27_cast_fp16")]; + tensor attn_output_49_cast_fp16 = scaled_dot_product_attention(attn_mask = causal_mask_27_cast_fp16, key = key_states_51_cast_fp16, query = query_states_51_cast_fp16, value = value_states_51_cast_fp16)[name = string("attn_output_49_cast_fp16")]; + tensor var_2476_perm_0 = const()[name = string("op_2476_perm_0"), val = tensor([0, 2, 1, 3])]; + int32 concat_246_axis_0 = const()[name = string("concat_246_axis_0"), val = int32(0)]; + bool concat_246_interleave_0 = const()[name = string("concat_246_interleave_0"), val = bool(false)]; + int32 gather_221_cast_uint16_to_int32 = cast(dtype = gather_221_cast_uint16_to_int32_dtype_0, x = gather_221_cast_uint16)[name = string("cast_120")]; + tensor concat_246 = concat(axis = concat_246_axis_0, interleave = concat_246_interleave_0, values = (gather_220, gather_221_cast_uint16_to_int32, var_72))[name = string("concat_246")]; + tensor var_2476_cast_fp16 = transpose(perm = var_2476_perm_0, x = attn_output_49_cast_fp16)[name = string("transpose_60")]; + tensor input_97_cast_fp16 = reshape(shape = concat_246, x = var_2476_cast_fp16)[name = string("input_97_cast_fp16")]; + tensor model_model_layers_12_self_attn_o_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(910142464))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(914861120))))[name = string("model_model_layers_12_self_attn_o_proj_weight_to_fp16_quantized")]; + tensor linear_87_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_12_self_attn_o_proj_weight_to_fp16_quantized, x = input_97_cast_fp16)[name = string("linear_87_cast_fp16")]; + tensor hidden_states_379_cast_fp16 = add(x = hidden_states_359_cast_fp16, y = linear_87_cast_fp16)[name = string("hidden_states_379_cast_fp16")]; + fp16 var_78_promoted_25_to_fp16 = const()[name = string("op_78_promoted_25_to_fp16"), val = fp16(0x1p+1)]; + tensor var_2485_cast_fp16 = pow(x = hidden_states_379_cast_fp16, y = var_78_promoted_25_to_fp16)[name = string("op_2485_cast_fp16")]; + tensor variance_51_axes_0 = const()[name = string("variance_51_axes_0"), val = tensor([-1])]; + bool variance_51_keep_dims_0 = const()[name = string("variance_51_keep_dims_0"), val = bool(true)]; + tensor variance_51_cast_fp16 = reduce_mean(axes = variance_51_axes_0, keep_dims = variance_51_keep_dims_0, x = var_2485_cast_fp16)[name = string("variance_51_cast_fp16")]; + fp16 var_2488_to_fp16 = const()[name = string("op_2488_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_2489_cast_fp16 = add(x = variance_51_cast_fp16, y = var_2488_to_fp16)[name = string("op_2489_cast_fp16")]; + fp32 var_2490_epsilon_0 = const()[name = string("op_2490_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_2490_cast_fp16 = rsqrt(epsilon = var_2490_epsilon_0, x = var_2489_cast_fp16)[name = string("op_2490_cast_fp16")]; + tensor hidden_states_383_cast_fp16 = mul(x = hidden_states_379_cast_fp16, y = var_2490_cast_fp16)[name = string("hidden_states_383_cast_fp16")]; + tensor model_model_layers_12_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_12_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(915451008)))]; + tensor input_99_cast_fp16 = mul(x = model_model_layers_12_post_attention_layernorm_weight_to_fp16, y = hidden_states_383_cast_fp16)[name = string("input_99_cast_fp16")]; + tensor model_model_layers_12_mlp_gate_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(915457216))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(928040192))))[name = string("model_model_layers_12_mlp_gate_proj_weight_to_fp16_quantized")]; + tensor linear_88_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_12_mlp_gate_proj_weight_to_fp16_quantized, x = input_99_cast_fp16)[name = string("linear_88_cast_fp16")]; + tensor var_2502_cast_fp16 = silu(x = linear_88_cast_fp16)[name = string("op_2502_cast_fp16")]; + tensor model_model_layers_12_mlp_up_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(929613120))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(942196096))))[name = string("model_model_layers_12_mlp_up_proj_weight_to_fp16_quantized")]; + tensor linear_89_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_12_mlp_up_proj_weight_to_fp16_quantized, x = input_99_cast_fp16)[name = string("linear_89_cast_fp16")]; + tensor input_103_cast_fp16 = mul(x = var_2502_cast_fp16, y = linear_89_cast_fp16)[name = string("input_103_cast_fp16")]; + tensor model_model_layers_12_mlp_down_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(943769024))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(956352000))))[name = string("model_model_layers_12_mlp_down_proj_weight_to_fp16_quantized")]; + tensor linear_90_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_12_mlp_down_proj_weight_to_fp16_quantized, x = input_103_cast_fp16)[name = string("linear_90_cast_fp16")]; + tensor hidden_states_389_cast_fp16 = add(x = hidden_states_379_cast_fp16, y = linear_90_cast_fp16)[name = string("hidden_states_389_cast_fp16")]; + fp16 var_78_promoted_26_to_fp16 = const()[name = string("op_78_promoted_26_to_fp16"), val = fp16(0x1p+1)]; + tensor var_2515_cast_fp16 = pow(x = hidden_states_389_cast_fp16, y = var_78_promoted_26_to_fp16)[name = string("op_2515_cast_fp16")]; + tensor variance_53_axes_0 = const()[name = string("variance_53_axes_0"), val = tensor([-1])]; + bool variance_53_keep_dims_0 = const()[name = string("variance_53_keep_dims_0"), val = bool(true)]; + tensor variance_53_cast_fp16 = reduce_mean(axes = variance_53_axes_0, keep_dims = variance_53_keep_dims_0, x = var_2515_cast_fp16)[name = string("variance_53_cast_fp16")]; + fp16 var_2518_to_fp16 = const()[name = string("op_2518_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_2519_cast_fp16 = add(x = variance_53_cast_fp16, y = var_2518_to_fp16)[name = string("op_2519_cast_fp16")]; + fp32 var_2520_epsilon_0 = const()[name = string("op_2520_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_2520_cast_fp16 = rsqrt(epsilon = var_2520_epsilon_0, x = var_2519_cast_fp16)[name = string("op_2520_cast_fp16")]; + tensor hidden_states_393_cast_fp16 = mul(x = hidden_states_389_cast_fp16, y = var_2520_cast_fp16)[name = string("hidden_states_393_cast_fp16")]; + tensor model_model_layers_13_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_13_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(957924928)))]; + tensor hidden_states_397_cast_fp16 = mul(x = model_model_layers_13_input_layernorm_weight_to_fp16, y = hidden_states_393_cast_fp16)[name = string("hidden_states_397_cast_fp16")]; + tensor var_2531_shape_cast_fp16 = shape(x = hidden_states_397_cast_fp16)[name = string("op_2531_shape_cast_fp16")]; + int32 gather_238 = const()[name = string("gather_238"), val = int32(1)]; + int32 gather_239_axis_0 = const()[name = string("gather_239_axis_0"), val = int32(0)]; + int32 gather_239_batch_dims_0 = const()[name = string("gather_239_batch_dims_0"), val = int32(0)]; + bool gather_239_validate_indices_0 = const()[name = string("gather_239_validate_indices_0"), val = bool(false)]; + string var_2531_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_2531_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_239_to_uint16 = const()[name = string("select_239_to_uint16"), val = uint16(1)]; + tensor var_2531_shape_cast_fp16_to_uint16 = cast(dtype = var_2531_shape_cast_fp16_to_uint16_dtype_0, x = var_2531_shape_cast_fp16)[name = string("cast_119")]; + uint16 gather_239_cast_uint16 = gather(axis = gather_239_axis_0, batch_dims = gather_239_batch_dims_0, indices = select_239_to_uint16, validate_indices = gather_239_validate_indices_0, x = var_2531_shape_cast_fp16_to_uint16)[name = string("gather_239_cast_uint16")]; + string gather_239_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_239_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor model_model_layers_13_self_attn_q_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(957931136))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(962649792))))[name = string("model_model_layers_13_self_attn_q_proj_weight_to_fp16_quantized")]; + tensor linear_91_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_13_self_attn_q_proj_weight_to_fp16_quantized, x = hidden_states_397_cast_fp16)[name = string("linear_91_cast_fp16")]; + tensor model_model_layers_13_self_attn_k_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(963239680))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(964812608))))[name = string("model_model_layers_13_self_attn_k_proj_weight_to_fp16_quantized")]; + tensor linear_92_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_13_self_attn_k_proj_weight_to_fp16_quantized, x = hidden_states_397_cast_fp16)[name = string("linear_92_cast_fp16")]; + tensor model_model_layers_13_self_attn_v_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(965009280))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(966582208))))[name = string("model_model_layers_13_self_attn_v_proj_weight_to_fp16_quantized")]; + tensor linear_93_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_13_self_attn_v_proj_weight_to_fp16_quantized, x = hidden_states_397_cast_fp16)[name = string("linear_93_cast_fp16")]; + tensor concat_247x = const()[name = string("concat_247x"), val = tensor([1, -1, 24, 128])]; + tensor var_2540_cast_fp16 = reshape(shape = concat_247x, x = linear_91_cast_fp16)[name = string("op_2540_cast_fp16")]; + tensor q_27_perm_0 = const()[name = string("q_27_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_248x = const()[name = string("concat_248x"), val = tensor([1, -1, 8, 128])]; + tensor var_2543_cast_fp16 = reshape(shape = concat_248x, x = linear_92_cast_fp16)[name = string("op_2543_cast_fp16")]; + tensor k_27_perm_0 = const()[name = string("k_27_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_249x = const()[name = string("concat_249x"), val = tensor([1, -1, 8, 128])]; + tensor var_2546_cast_fp16 = reshape(shape = concat_249x, x = linear_93_cast_fp16)[name = string("op_2546_cast_fp16")]; + tensor v_state_27_perm_0 = const()[name = string("v_state_27_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor q_27_cast_fp16 = transpose(perm = q_27_perm_0, x = var_2540_cast_fp16)[name = string("transpose_59")]; + tensor var_2550_cast_fp16 = mul(x = q_27_cast_fp16, y = cos_7_cast_fp16)[name = string("op_2550_cast_fp16")]; + tensor x1_53_begin_0 = const()[name = string("x1_53_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_53_end_0 = const()[name = string("x1_53_end_0"), val = tensor([1, 24, 0, 64])]; + tensor x1_53_end_mask_0 = const()[name = string("x1_53_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_53_cast_fp16 = slice_by_index(begin = x1_53_begin_0, end = x1_53_end_0, end_mask = x1_53_end_mask_0, x = q_27_cast_fp16)[name = string("x1_53_cast_fp16")]; + tensor x2_53_begin_0 = const()[name = string("x2_53_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_53_end_0 = const()[name = string("x2_53_end_0"), val = tensor([1, 24, 0, 128])]; + tensor x2_53_end_mask_0 = const()[name = string("x2_53_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_53_cast_fp16 = slice_by_index(begin = x2_53_begin_0, end = x2_53_end_0, end_mask = x2_53_end_mask_0, x = q_27_cast_fp16)[name = string("x2_53_cast_fp16")]; + fp16 const_29_promoted_to_fp16 = const()[name = string("const_29_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_2561_cast_fp16 = mul(x = x2_53_cast_fp16, y = const_29_promoted_to_fp16)[name = string("op_2561_cast_fp16")]; + bool var_2563_interleave_0 = const()[name = string("op_2563_interleave_0"), val = bool(false)]; + tensor var_2563_cast_fp16 = concat(axis = var_72, interleave = var_2563_interleave_0, values = (var_2561_cast_fp16, x1_53_cast_fp16))[name = string("op_2563_cast_fp16")]; + tensor var_2564_cast_fp16 = mul(x = var_2563_cast_fp16, y = sin_7_cast_fp16)[name = string("op_2564_cast_fp16")]; + tensor query_states_55_cast_fp16 = add(x = var_2550_cast_fp16, y = var_2564_cast_fp16)[name = string("query_states_55_cast_fp16")]; + tensor k_27_cast_fp16 = transpose(perm = k_27_perm_0, x = var_2543_cast_fp16)[name = string("transpose_58")]; + tensor var_2566_cast_fp16 = mul(x = k_27_cast_fp16, y = cos_7_cast_fp16)[name = string("op_2566_cast_fp16")]; + tensor x1_55_begin_0 = const()[name = string("x1_55_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_55_end_0 = const()[name = string("x1_55_end_0"), val = tensor([1, 8, 0, 64])]; + tensor x1_55_end_mask_0 = const()[name = string("x1_55_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_55_cast_fp16 = slice_by_index(begin = x1_55_begin_0, end = x1_55_end_0, end_mask = x1_55_end_mask_0, x = k_27_cast_fp16)[name = string("x1_55_cast_fp16")]; + tensor x2_55_begin_0 = const()[name = string("x2_55_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_55_end_0 = const()[name = string("x2_55_end_0"), val = tensor([1, 8, 0, 128])]; + tensor x2_55_end_mask_0 = const()[name = string("x2_55_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_55_cast_fp16 = slice_by_index(begin = x2_55_begin_0, end = x2_55_end_0, end_mask = x2_55_end_mask_0, x = k_27_cast_fp16)[name = string("x2_55_cast_fp16")]; + fp16 const_30_promoted_to_fp16 = const()[name = string("const_30_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_2577_cast_fp16 = mul(x = x2_55_cast_fp16, y = const_30_promoted_to_fp16)[name = string("op_2577_cast_fp16")]; + bool var_2579_interleave_0 = const()[name = string("op_2579_interleave_0"), val = bool(false)]; + tensor var_2579_cast_fp16 = concat(axis = var_72, interleave = var_2579_interleave_0, values = (var_2577_cast_fp16, x1_55_cast_fp16))[name = string("op_2579_cast_fp16")]; + tensor var_2580_cast_fp16 = mul(x = var_2579_cast_fp16, y = sin_7_cast_fp16)[name = string("op_2580_cast_fp16")]; + tensor k_state_27_cast_fp16 = add(x = var_2566_cast_fp16, y = var_2580_cast_fp16)[name = string("k_state_27_cast_fp16")]; + tensor expand_dims_156 = const()[name = string("expand_dims_156"), val = tensor([0])]; + tensor expand_dims_157 = const()[name = string("expand_dims_157"), val = tensor([0])]; + tensor expand_dims_159 = const()[name = string("expand_dims_159"), val = tensor([0])]; + tensor concat_252_values0_0 = const()[name = string("concat_252_values0_0"), val = tensor([13])]; + int32 concat_252_axis_0 = const()[name = string("concat_252_axis_0"), val = int32(0)]; + bool concat_252_interleave_0 = const()[name = string("concat_252_interleave_0"), val = bool(false)]; + tensor concat_252 = concat(axis = concat_252_axis_0, interleave = concat_252_interleave_0, values = (concat_252_values0_0, expand_dims_156, expand_dims_157, expand_dims_2, expand_dims_159))[name = string("concat_252")]; + tensor key_cache_internal_tensor_assign_14_stride_0 = const()[name = string("key_cache_internal_tensor_assign_14_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor key_cache_internal_tensor_assign_14_begin_mask_0 = const()[name = string("key_cache_internal_tensor_assign_14_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_14_end_mask_0 = const()[name = string("key_cache_internal_tensor_assign_14_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor key_cache_internal_tensor_assign_14_squeeze_mask_0 = const()[name = string("key_cache_internal_tensor_assign_14_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_14_cast_fp16 = slice_update(begin = concat_252, begin_mask = key_cache_internal_tensor_assign_14_begin_mask_0, end = concat_6, end_mask = key_cache_internal_tensor_assign_14_end_mask_0, squeeze_mask = key_cache_internal_tensor_assign_14_squeeze_mask_0, stride = key_cache_internal_tensor_assign_14_stride_0, update = k_state_27_cast_fp16, x = coreml_update_state_80)[name = string("key_cache_internal_tensor_assign_14_cast_fp16")]; + write_state(data = key_cache_internal_tensor_assign_14_cast_fp16, input = key_cache)[name = string("coreml_update_state_82_write_state")]; + tensor coreml_update_state_82 = read_state(input = key_cache)[name = string("coreml_update_state_82")]; + tensor value_cache_internal_tensor_assign_14_stride_0 = const()[name = string("value_cache_internal_tensor_assign_14_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor value_cache_internal_tensor_assign_14_begin_mask_0 = const()[name = string("value_cache_internal_tensor_assign_14_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor value_cache_internal_tensor_assign_14_end_mask_0 = const()[name = string("value_cache_internal_tensor_assign_14_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor value_cache_internal_tensor_assign_14_squeeze_mask_0 = const()[name = string("value_cache_internal_tensor_assign_14_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor v_state_27_cast_fp16 = transpose(perm = v_state_27_perm_0, x = var_2546_cast_fp16)[name = string("transpose_57")]; + tensor value_cache_internal_tensor_assign_14_cast_fp16 = slice_update(begin = concat_252, begin_mask = value_cache_internal_tensor_assign_14_begin_mask_0, end = concat_6, end_mask = value_cache_internal_tensor_assign_14_end_mask_0, squeeze_mask = value_cache_internal_tensor_assign_14_squeeze_mask_0, stride = value_cache_internal_tensor_assign_14_stride_0, update = v_state_27_cast_fp16, x = coreml_update_state_81)[name = string("value_cache_internal_tensor_assign_14_cast_fp16")]; + write_state(data = value_cache_internal_tensor_assign_14_cast_fp16, input = value_cache)[name = string("coreml_update_state_83_write_state")]; + tensor coreml_update_state_83 = read_state(input = value_cache)[name = string("coreml_update_state_83")]; + tensor var_2603_begin_0 = const()[name = string("op_2603_begin_0"), val = tensor([13, 0, 0, 0, 0])]; + tensor var_2603_end_0 = const()[name = string("op_2603_end_0"), val = tensor([14, 1, 8, 2048, 128])]; + tensor var_2603_end_mask_0 = const()[name = string("op_2603_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_2603_squeeze_mask_0 = const()[name = string("op_2603_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_2603_cast_fp16 = slice_by_index(begin = var_2603_begin_0, end = var_2603_end_0, end_mask = var_2603_end_mask_0, squeeze_mask = var_2603_squeeze_mask_0, x = coreml_update_state_82)[name = string("op_2603_cast_fp16")]; + tensor var_2606_begin_0 = const()[name = string("op_2606_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_2606_end_mask_0 = const()[name = string("op_2606_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_2606_cast_fp16 = slice_by_index(begin = var_2606_begin_0, end = concat_11, end_mask = var_2606_end_mask_0, x = var_2603_cast_fp16)[name = string("op_2606_cast_fp16")]; + tensor var_2608_begin_0 = const()[name = string("op_2608_begin_0"), val = tensor([13, 0, 0, 0, 0])]; + tensor var_2608_end_0 = const()[name = string("op_2608_end_0"), val = tensor([14, 1, 8, 2048, 128])]; + tensor var_2608_end_mask_0 = const()[name = string("op_2608_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_2608_squeeze_mask_0 = const()[name = string("op_2608_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_2608_cast_fp16 = slice_by_index(begin = var_2608_begin_0, end = var_2608_end_0, end_mask = var_2608_end_mask_0, squeeze_mask = var_2608_squeeze_mask_0, x = coreml_update_state_83)[name = string("op_2608_cast_fp16")]; + tensor var_2611_begin_0 = const()[name = string("op_2611_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_2611_end_mask_0 = const()[name = string("op_2611_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_2611_cast_fp16 = slice_by_index(begin = var_2611_begin_0, end = concat_11, end_mask = var_2611_end_mask_0, x = var_2608_cast_fp16)[name = string("op_2611_cast_fp16")]; + tensor var_2613_shape_cast_fp16 = shape(x = var_2606_cast_fp16)[name = string("op_2613_shape_cast_fp16")]; + int32 gather_247 = const()[name = string("gather_247"), val = int32(1)]; + int32 gather_248 = const()[name = string("gather_248"), val = int32(8)]; + int32 gather_249_axis_0 = const()[name = string("gather_249_axis_0"), val = int32(0)]; + int32 gather_249_batch_dims_0 = const()[name = string("gather_249_batch_dims_0"), val = int32(0)]; + bool gather_249_validate_indices_0 = const()[name = string("gather_249_validate_indices_0"), val = bool(false)]; + string var_2613_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_2613_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_249_to_uint16 = const()[name = string("select_249_to_uint16"), val = uint16(2)]; + tensor var_2613_shape_cast_fp16_to_uint16 = cast(dtype = var_2613_shape_cast_fp16_to_uint16_dtype_0, x = var_2613_shape_cast_fp16)[name = string("cast_118")]; + uint16 gather_249_cast_uint16 = gather(axis = gather_249_axis_0, batch_dims = gather_249_batch_dims_0, indices = select_249_to_uint16, validate_indices = gather_249_validate_indices_0, x = var_2613_shape_cast_fp16_to_uint16)[name = string("gather_249_cast_uint16")]; + string gather_249_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_249_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_250 = const()[name = string("gather_250"), val = int32(128)]; + tensor var_2620_axes_0 = const()[name = string("op_2620_axes_0"), val = tensor([2])]; + tensor var_2620_cast_fp16 = expand_dims(axes = var_2620_axes_0, x = var_2606_cast_fp16)[name = string("op_2620_cast_fp16")]; + tensor shape_277_cast_fp16 = shape(x = var_2620_cast_fp16)[name = string("shape_277_cast_fp16")]; + int32 concat_260_axis_0 = const()[name = string("concat_260_axis_0"), val = int32(0)]; + bool concat_260_interleave_0 = const()[name = string("concat_260_interleave_0"), val = bool(false)]; + int32 gather_249_cast_uint16_to_int32 = cast(dtype = gather_249_cast_uint16_to_int32_dtype_0, x = gather_249_cast_uint16)[name = string("cast_117")]; + tensor concat_260 = concat(axis = concat_260_axis_0, interleave = concat_260_interleave_0, values = (gather_247, gather_248, var_81, gather_249_cast_uint16_to_int32, gather_250))[name = string("concat_260")]; + tensor real_div_26 = real_div(x = concat_260, y = shape_277_cast_fp16)[name = string("real_div_26")]; + tensor hidden_states_401_cast_fp16 = tile(reps = real_div_26, x = var_2620_cast_fp16)[name = string("hidden_states_401_cast_fp16")]; + tensor concat_261x = const()[name = string("concat_261x"), val = tensor([1, 24, -1, 128])]; + tensor key_states_55_cast_fp16 = reshape(shape = concat_261x, x = hidden_states_401_cast_fp16)[name = string("key_states_55_cast_fp16")]; + tensor var_2630_shape_cast_fp16 = shape(x = var_2611_cast_fp16)[name = string("op_2630_shape_cast_fp16")]; + int32 gather_251 = const()[name = string("gather_251"), val = int32(1)]; + int32 gather_252 = const()[name = string("gather_252"), val = int32(8)]; + int32 gather_253_axis_0 = const()[name = string("gather_253_axis_0"), val = int32(0)]; + int32 gather_253_batch_dims_0 = const()[name = string("gather_253_batch_dims_0"), val = int32(0)]; + bool gather_253_validate_indices_0 = const()[name = string("gather_253_validate_indices_0"), val = bool(false)]; + string var_2630_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_2630_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_253_to_uint16 = const()[name = string("select_253_to_uint16"), val = uint16(2)]; + tensor var_2630_shape_cast_fp16_to_uint16 = cast(dtype = var_2630_shape_cast_fp16_to_uint16_dtype_0, x = var_2630_shape_cast_fp16)[name = string("cast_116")]; + uint16 gather_253_cast_uint16 = gather(axis = gather_253_axis_0, batch_dims = gather_253_batch_dims_0, indices = select_253_to_uint16, validate_indices = gather_253_validate_indices_0, x = var_2630_shape_cast_fp16_to_uint16)[name = string("gather_253_cast_uint16")]; + string gather_253_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_253_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_254 = const()[name = string("gather_254"), val = int32(128)]; + tensor var_2637_axes_0 = const()[name = string("op_2637_axes_0"), val = tensor([2])]; + tensor var_2637_cast_fp16 = expand_dims(axes = var_2637_axes_0, x = var_2611_cast_fp16)[name = string("op_2637_cast_fp16")]; + tensor shape_282_cast_fp16 = shape(x = var_2637_cast_fp16)[name = string("shape_282_cast_fp16")]; + int32 concat_262_axis_0 = const()[name = string("concat_262_axis_0"), val = int32(0)]; + bool concat_262_interleave_0 = const()[name = string("concat_262_interleave_0"), val = bool(false)]; + int32 gather_253_cast_uint16_to_int32 = cast(dtype = gather_253_cast_uint16_to_int32_dtype_0, x = gather_253_cast_uint16)[name = string("cast_115")]; + tensor concat_262 = concat(axis = concat_262_axis_0, interleave = concat_262_interleave_0, values = (gather_251, gather_252, var_81, gather_253_cast_uint16_to_int32, gather_254))[name = string("concat_262")]; + tensor real_div_27 = real_div(x = concat_262, y = shape_282_cast_fp16)[name = string("real_div_27")]; + tensor hidden_states_405_cast_fp16 = tile(reps = real_div_27, x = var_2637_cast_fp16)[name = string("hidden_states_405_cast_fp16")]; + tensor concat_263x = const()[name = string("concat_263x"), val = tensor([1, 24, -1, 128])]; + tensor value_states_55_cast_fp16 = reshape(shape = concat_263x, x = hidden_states_405_cast_fp16)[name = string("value_states_55_cast_fp16")]; + tensor var_2647_shape_cast_fp16 = shape(x = key_states_55_cast_fp16)[name = string("op_2647_shape_cast_fp16")]; + int32 gather_255_axis_0 = const()[name = string("gather_255_axis_0"), val = int32(0)]; + int32 gather_255_batch_dims_0 = const()[name = string("gather_255_batch_dims_0"), val = int32(0)]; + bool gather_255_validate_indices_0 = const()[name = string("gather_255_validate_indices_0"), val = bool(false)]; + string var_2647_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_2647_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_255_to_uint16 = const()[name = string("select_255_to_uint16"), val = uint16(2)]; + tensor var_2647_shape_cast_fp16_to_uint16 = cast(dtype = var_2647_shape_cast_fp16_to_uint16_dtype_0, x = var_2647_shape_cast_fp16)[name = string("cast_114")]; + uint16 gather_255_cast_uint16 = gather(axis = gather_255_axis_0, batch_dims = gather_255_batch_dims_0, indices = select_255_to_uint16, validate_indices = gather_255_validate_indices_0, x = var_2647_shape_cast_fp16_to_uint16)[name = string("gather_255_cast_uint16")]; + string gather_255_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_255_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 concat_264_values0_0 = const()[name = string("concat_264_values0_0"), val = int32(1)]; + int32 concat_264_values1_0 = const()[name = string("concat_264_values1_0"), val = int32(1)]; + int32 concat_264_values2_0 = const()[name = string("concat_264_values2_0"), val = int32(0)]; + int32 concat_264_axis_0 = const()[name = string("concat_264_axis_0"), val = int32(0)]; + bool concat_264_interleave_0 = const()[name = string("concat_264_interleave_0"), val = bool(false)]; + int32 gather_255_cast_uint16_to_int32 = cast(dtype = gather_255_cast_uint16_to_int32_dtype_0, x = gather_255_cast_uint16)[name = string("cast_113")]; + tensor concat_264 = concat(axis = concat_264_axis_0, interleave = concat_264_interleave_0, values = (concat_264_values0_0, concat_264_values1_0, concat_264_values2_0, gather_255_cast_uint16_to_int32))[name = string("concat_264")]; + tensor causal_mask_29_begin_0 = const()[name = string("causal_mask_29_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor causal_mask_29_end_mask_0 = const()[name = string("causal_mask_29_end_mask_0"), val = tensor([true, true, true, false])]; + tensor causal_mask_29_cast_fp16 = slice_by_index(begin = causal_mask_29_begin_0, end = concat_264, end_mask = causal_mask_29_end_mask_0, x = causal_mask)[name = string("causal_mask_29_cast_fp16")]; + tensor attn_output_53_cast_fp16 = scaled_dot_product_attention(attn_mask = causal_mask_29_cast_fp16, key = key_states_55_cast_fp16, query = query_states_55_cast_fp16, value = value_states_55_cast_fp16)[name = string("attn_output_53_cast_fp16")]; + tensor var_2653_perm_0 = const()[name = string("op_2653_perm_0"), val = tensor([0, 2, 1, 3])]; + int32 concat_265_axis_0 = const()[name = string("concat_265_axis_0"), val = int32(0)]; + bool concat_265_interleave_0 = const()[name = string("concat_265_interleave_0"), val = bool(false)]; + int32 gather_239_cast_uint16_to_int32 = cast(dtype = gather_239_cast_uint16_to_int32_dtype_0, x = gather_239_cast_uint16)[name = string("cast_112")]; + tensor concat_265 = concat(axis = concat_265_axis_0, interleave = concat_265_interleave_0, values = (gather_238, gather_239_cast_uint16_to_int32, var_72))[name = string("concat_265")]; + tensor var_2653_cast_fp16 = transpose(perm = var_2653_perm_0, x = attn_output_53_cast_fp16)[name = string("transpose_56")]; + tensor input_105_cast_fp16 = reshape(shape = concat_265, x = var_2653_cast_fp16)[name = string("input_105_cast_fp16")]; + tensor model_model_layers_13_self_attn_o_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(966778880))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(971497536))))[name = string("model_model_layers_13_self_attn_o_proj_weight_to_fp16_quantized")]; + tensor linear_94_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_13_self_attn_o_proj_weight_to_fp16_quantized, x = input_105_cast_fp16)[name = string("linear_94_cast_fp16")]; + tensor hidden_states_409_cast_fp16 = add(x = hidden_states_389_cast_fp16, y = linear_94_cast_fp16)[name = string("hidden_states_409_cast_fp16")]; + fp16 var_78_promoted_27_to_fp16 = const()[name = string("op_78_promoted_27_to_fp16"), val = fp16(0x1p+1)]; + tensor var_2662_cast_fp16 = pow(x = hidden_states_409_cast_fp16, y = var_78_promoted_27_to_fp16)[name = string("op_2662_cast_fp16")]; + tensor variance_55_axes_0 = const()[name = string("variance_55_axes_0"), val = tensor([-1])]; + bool variance_55_keep_dims_0 = const()[name = string("variance_55_keep_dims_0"), val = bool(true)]; + tensor variance_55_cast_fp16 = reduce_mean(axes = variance_55_axes_0, keep_dims = variance_55_keep_dims_0, x = var_2662_cast_fp16)[name = string("variance_55_cast_fp16")]; + fp16 var_2665_to_fp16 = const()[name = string("op_2665_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_2666_cast_fp16 = add(x = variance_55_cast_fp16, y = var_2665_to_fp16)[name = string("op_2666_cast_fp16")]; + fp32 var_2667_epsilon_0 = const()[name = string("op_2667_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_2667_cast_fp16 = rsqrt(epsilon = var_2667_epsilon_0, x = var_2666_cast_fp16)[name = string("op_2667_cast_fp16")]; + tensor hidden_states_413_cast_fp16 = mul(x = hidden_states_409_cast_fp16, y = var_2667_cast_fp16)[name = string("hidden_states_413_cast_fp16")]; + tensor model_model_layers_13_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_13_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(972087424)))]; + tensor input_107_cast_fp16 = mul(x = model_model_layers_13_post_attention_layernorm_weight_to_fp16, y = hidden_states_413_cast_fp16)[name = string("input_107_cast_fp16")]; + tensor model_model_layers_13_mlp_gate_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(972093632))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(984676608))))[name = string("model_model_layers_13_mlp_gate_proj_weight_to_fp16_quantized")]; + tensor linear_95_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_13_mlp_gate_proj_weight_to_fp16_quantized, x = input_107_cast_fp16)[name = string("linear_95_cast_fp16")]; + tensor var_2679_cast_fp16 = silu(x = linear_95_cast_fp16)[name = string("op_2679_cast_fp16")]; + tensor model_model_layers_13_mlp_up_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(986249536))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(998832512))))[name = string("model_model_layers_13_mlp_up_proj_weight_to_fp16_quantized")]; + tensor linear_96_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_13_mlp_up_proj_weight_to_fp16_quantized, x = input_107_cast_fp16)[name = string("linear_96_cast_fp16")]; + tensor input_111_cast_fp16 = mul(x = var_2679_cast_fp16, y = linear_96_cast_fp16)[name = string("input_111_cast_fp16")]; + tensor model_model_layers_13_mlp_down_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1000405440))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1012988416))))[name = string("model_model_layers_13_mlp_down_proj_weight_to_fp16_quantized")]; + tensor linear_97_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_13_mlp_down_proj_weight_to_fp16_quantized, x = input_111_cast_fp16)[name = string("linear_97_cast_fp16")]; + tensor hidden_states_419_cast_fp16 = add(x = hidden_states_409_cast_fp16, y = linear_97_cast_fp16)[name = string("hidden_states_419_cast_fp16")]; + fp16 var_78_promoted_28_to_fp16 = const()[name = string("op_78_promoted_28_to_fp16"), val = fp16(0x1p+1)]; + tensor var_2692_cast_fp16 = pow(x = hidden_states_419_cast_fp16, y = var_78_promoted_28_to_fp16)[name = string("op_2692_cast_fp16")]; + tensor variance_57_axes_0 = const()[name = string("variance_57_axes_0"), val = tensor([-1])]; + bool variance_57_keep_dims_0 = const()[name = string("variance_57_keep_dims_0"), val = bool(true)]; + tensor variance_57_cast_fp16 = reduce_mean(axes = variance_57_axes_0, keep_dims = variance_57_keep_dims_0, x = var_2692_cast_fp16)[name = string("variance_57_cast_fp16")]; + fp16 var_2695_to_fp16 = const()[name = string("op_2695_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_2696_cast_fp16 = add(x = variance_57_cast_fp16, y = var_2695_to_fp16)[name = string("op_2696_cast_fp16")]; + fp32 var_2697_epsilon_0 = const()[name = string("op_2697_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_2697_cast_fp16 = rsqrt(epsilon = var_2697_epsilon_0, x = var_2696_cast_fp16)[name = string("op_2697_cast_fp16")]; + tensor hidden_states_423_cast_fp16 = mul(x = hidden_states_419_cast_fp16, y = var_2697_cast_fp16)[name = string("hidden_states_423_cast_fp16")]; + tensor model_model_layers_14_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_14_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1014561344)))]; + tensor hidden_states_427_cast_fp16 = mul(x = model_model_layers_14_input_layernorm_weight_to_fp16, y = hidden_states_423_cast_fp16)[name = string("hidden_states_427_cast_fp16")]; + tensor var_2708_shape_cast_fp16 = shape(x = hidden_states_427_cast_fp16)[name = string("op_2708_shape_cast_fp16")]; + int32 gather_256 = const()[name = string("gather_256"), val = int32(1)]; + int32 gather_257_axis_0 = const()[name = string("gather_257_axis_0"), val = int32(0)]; + int32 gather_257_batch_dims_0 = const()[name = string("gather_257_batch_dims_0"), val = int32(0)]; + bool gather_257_validate_indices_0 = const()[name = string("gather_257_validate_indices_0"), val = bool(false)]; + string var_2708_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_2708_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_257_to_uint16 = const()[name = string("select_257_to_uint16"), val = uint16(1)]; + tensor var_2708_shape_cast_fp16_to_uint16 = cast(dtype = var_2708_shape_cast_fp16_to_uint16_dtype_0, x = var_2708_shape_cast_fp16)[name = string("cast_111")]; + uint16 gather_257_cast_uint16 = gather(axis = gather_257_axis_0, batch_dims = gather_257_batch_dims_0, indices = select_257_to_uint16, validate_indices = gather_257_validate_indices_0, x = var_2708_shape_cast_fp16_to_uint16)[name = string("gather_257_cast_uint16")]; + string gather_257_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_257_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor model_model_layers_14_self_attn_q_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1014567552))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1019286208))))[name = string("model_model_layers_14_self_attn_q_proj_weight_to_fp16_quantized")]; + tensor linear_98_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_14_self_attn_q_proj_weight_to_fp16_quantized, x = hidden_states_427_cast_fp16)[name = string("linear_98_cast_fp16")]; + tensor model_model_layers_14_self_attn_k_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1019876096))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1021449024))))[name = string("model_model_layers_14_self_attn_k_proj_weight_to_fp16_quantized")]; + tensor linear_99_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_14_self_attn_k_proj_weight_to_fp16_quantized, x = hidden_states_427_cast_fp16)[name = string("linear_99_cast_fp16")]; + tensor model_model_layers_14_self_attn_v_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1021645696))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1023218624))))[name = string("model_model_layers_14_self_attn_v_proj_weight_to_fp16_quantized")]; + tensor linear_100_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_14_self_attn_v_proj_weight_to_fp16_quantized, x = hidden_states_427_cast_fp16)[name = string("linear_100_cast_fp16")]; + tensor concat_266x = const()[name = string("concat_266x"), val = tensor([1, -1, 24, 128])]; + tensor var_2717_cast_fp16 = reshape(shape = concat_266x, x = linear_98_cast_fp16)[name = string("op_2717_cast_fp16")]; + tensor q_29_perm_0 = const()[name = string("q_29_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_267x = const()[name = string("concat_267x"), val = tensor([1, -1, 8, 128])]; + tensor var_2720_cast_fp16 = reshape(shape = concat_267x, x = linear_99_cast_fp16)[name = string("op_2720_cast_fp16")]; + tensor k_29_perm_0 = const()[name = string("k_29_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_268x = const()[name = string("concat_268x"), val = tensor([1, -1, 8, 128])]; + tensor var_2723_cast_fp16 = reshape(shape = concat_268x, x = linear_100_cast_fp16)[name = string("op_2723_cast_fp16")]; + tensor v_state_29_perm_0 = const()[name = string("v_state_29_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor q_29_cast_fp16 = transpose(perm = q_29_perm_0, x = var_2717_cast_fp16)[name = string("transpose_55")]; + tensor var_2727_cast_fp16 = mul(x = q_29_cast_fp16, y = cos_7_cast_fp16)[name = string("op_2727_cast_fp16")]; + tensor x1_57_begin_0 = const()[name = string("x1_57_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_57_end_0 = const()[name = string("x1_57_end_0"), val = tensor([1, 24, 0, 64])]; + tensor x1_57_end_mask_0 = const()[name = string("x1_57_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_57_cast_fp16 = slice_by_index(begin = x1_57_begin_0, end = x1_57_end_0, end_mask = x1_57_end_mask_0, x = q_29_cast_fp16)[name = string("x1_57_cast_fp16")]; + tensor x2_57_begin_0 = const()[name = string("x2_57_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_57_end_0 = const()[name = string("x2_57_end_0"), val = tensor([1, 24, 0, 128])]; + tensor x2_57_end_mask_0 = const()[name = string("x2_57_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_57_cast_fp16 = slice_by_index(begin = x2_57_begin_0, end = x2_57_end_0, end_mask = x2_57_end_mask_0, x = q_29_cast_fp16)[name = string("x2_57_cast_fp16")]; + fp16 const_31_promoted_to_fp16 = const()[name = string("const_31_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_2738_cast_fp16 = mul(x = x2_57_cast_fp16, y = const_31_promoted_to_fp16)[name = string("op_2738_cast_fp16")]; + bool var_2740_interleave_0 = const()[name = string("op_2740_interleave_0"), val = bool(false)]; + tensor var_2740_cast_fp16 = concat(axis = var_72, interleave = var_2740_interleave_0, values = (var_2738_cast_fp16, x1_57_cast_fp16))[name = string("op_2740_cast_fp16")]; + tensor var_2741_cast_fp16 = mul(x = var_2740_cast_fp16, y = sin_7_cast_fp16)[name = string("op_2741_cast_fp16")]; + tensor query_states_59_cast_fp16 = add(x = var_2727_cast_fp16, y = var_2741_cast_fp16)[name = string("query_states_59_cast_fp16")]; + tensor k_29_cast_fp16 = transpose(perm = k_29_perm_0, x = var_2720_cast_fp16)[name = string("transpose_54")]; + tensor var_2743_cast_fp16 = mul(x = k_29_cast_fp16, y = cos_7_cast_fp16)[name = string("op_2743_cast_fp16")]; + tensor x1_59_begin_0 = const()[name = string("x1_59_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_59_end_0 = const()[name = string("x1_59_end_0"), val = tensor([1, 8, 0, 64])]; + tensor x1_59_end_mask_0 = const()[name = string("x1_59_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_59_cast_fp16 = slice_by_index(begin = x1_59_begin_0, end = x1_59_end_0, end_mask = x1_59_end_mask_0, x = k_29_cast_fp16)[name = string("x1_59_cast_fp16")]; + tensor x2_59_begin_0 = const()[name = string("x2_59_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_59_end_0 = const()[name = string("x2_59_end_0"), val = tensor([1, 8, 0, 128])]; + tensor x2_59_end_mask_0 = const()[name = string("x2_59_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_59_cast_fp16 = slice_by_index(begin = x2_59_begin_0, end = x2_59_end_0, end_mask = x2_59_end_mask_0, x = k_29_cast_fp16)[name = string("x2_59_cast_fp16")]; + fp16 const_32_promoted_to_fp16 = const()[name = string("const_32_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_2754_cast_fp16 = mul(x = x2_59_cast_fp16, y = const_32_promoted_to_fp16)[name = string("op_2754_cast_fp16")]; + bool var_2756_interleave_0 = const()[name = string("op_2756_interleave_0"), val = bool(false)]; + tensor var_2756_cast_fp16 = concat(axis = var_72, interleave = var_2756_interleave_0, values = (var_2754_cast_fp16, x1_59_cast_fp16))[name = string("op_2756_cast_fp16")]; + tensor var_2757_cast_fp16 = mul(x = var_2756_cast_fp16, y = sin_7_cast_fp16)[name = string("op_2757_cast_fp16")]; + tensor k_state_29_cast_fp16 = add(x = var_2743_cast_fp16, y = var_2757_cast_fp16)[name = string("k_state_29_cast_fp16")]; + tensor expand_dims_168 = const()[name = string("expand_dims_168"), val = tensor([0])]; + tensor expand_dims_169 = const()[name = string("expand_dims_169"), val = tensor([0])]; + tensor expand_dims_171 = const()[name = string("expand_dims_171"), val = tensor([0])]; + tensor concat_271_values0_0 = const()[name = string("concat_271_values0_0"), val = tensor([14])]; + int32 concat_271_axis_0 = const()[name = string("concat_271_axis_0"), val = int32(0)]; + bool concat_271_interleave_0 = const()[name = string("concat_271_interleave_0"), val = bool(false)]; + tensor concat_271 = concat(axis = concat_271_axis_0, interleave = concat_271_interleave_0, values = (concat_271_values0_0, expand_dims_168, expand_dims_169, expand_dims_2, expand_dims_171))[name = string("concat_271")]; + tensor key_cache_internal_tensor_assign_15_stride_0 = const()[name = string("key_cache_internal_tensor_assign_15_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor key_cache_internal_tensor_assign_15_begin_mask_0 = const()[name = string("key_cache_internal_tensor_assign_15_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_15_end_mask_0 = const()[name = string("key_cache_internal_tensor_assign_15_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor key_cache_internal_tensor_assign_15_squeeze_mask_0 = const()[name = string("key_cache_internal_tensor_assign_15_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_15_cast_fp16 = slice_update(begin = concat_271, begin_mask = key_cache_internal_tensor_assign_15_begin_mask_0, end = concat_6, end_mask = key_cache_internal_tensor_assign_15_end_mask_0, squeeze_mask = key_cache_internal_tensor_assign_15_squeeze_mask_0, stride = key_cache_internal_tensor_assign_15_stride_0, update = k_state_29_cast_fp16, x = coreml_update_state_82)[name = string("key_cache_internal_tensor_assign_15_cast_fp16")]; + write_state(data = key_cache_internal_tensor_assign_15_cast_fp16, input = key_cache)[name = string("coreml_update_state_84_write_state")]; + tensor coreml_update_state_84 = read_state(input = key_cache)[name = string("coreml_update_state_84")]; + tensor value_cache_internal_tensor_assign_15_stride_0 = const()[name = string("value_cache_internal_tensor_assign_15_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor value_cache_internal_tensor_assign_15_begin_mask_0 = const()[name = string("value_cache_internal_tensor_assign_15_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor value_cache_internal_tensor_assign_15_end_mask_0 = const()[name = string("value_cache_internal_tensor_assign_15_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor value_cache_internal_tensor_assign_15_squeeze_mask_0 = const()[name = string("value_cache_internal_tensor_assign_15_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor v_state_29_cast_fp16 = transpose(perm = v_state_29_perm_0, x = var_2723_cast_fp16)[name = string("transpose_53")]; + tensor value_cache_internal_tensor_assign_15_cast_fp16 = slice_update(begin = concat_271, begin_mask = value_cache_internal_tensor_assign_15_begin_mask_0, end = concat_6, end_mask = value_cache_internal_tensor_assign_15_end_mask_0, squeeze_mask = value_cache_internal_tensor_assign_15_squeeze_mask_0, stride = value_cache_internal_tensor_assign_15_stride_0, update = v_state_29_cast_fp16, x = coreml_update_state_83)[name = string("value_cache_internal_tensor_assign_15_cast_fp16")]; + write_state(data = value_cache_internal_tensor_assign_15_cast_fp16, input = value_cache)[name = string("coreml_update_state_85_write_state")]; + tensor coreml_update_state_85 = read_state(input = value_cache)[name = string("coreml_update_state_85")]; + tensor var_2780_begin_0 = const()[name = string("op_2780_begin_0"), val = tensor([14, 0, 0, 0, 0])]; + tensor var_2780_end_0 = const()[name = string("op_2780_end_0"), val = tensor([15, 1, 8, 2048, 128])]; + tensor var_2780_end_mask_0 = const()[name = string("op_2780_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_2780_squeeze_mask_0 = const()[name = string("op_2780_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_2780_cast_fp16 = slice_by_index(begin = var_2780_begin_0, end = var_2780_end_0, end_mask = var_2780_end_mask_0, squeeze_mask = var_2780_squeeze_mask_0, x = coreml_update_state_84)[name = string("op_2780_cast_fp16")]; + tensor var_2783_begin_0 = const()[name = string("op_2783_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_2783_end_mask_0 = const()[name = string("op_2783_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_2783_cast_fp16 = slice_by_index(begin = var_2783_begin_0, end = concat_11, end_mask = var_2783_end_mask_0, x = var_2780_cast_fp16)[name = string("op_2783_cast_fp16")]; + tensor var_2785_begin_0 = const()[name = string("op_2785_begin_0"), val = tensor([14, 0, 0, 0, 0])]; + tensor var_2785_end_0 = const()[name = string("op_2785_end_0"), val = tensor([15, 1, 8, 2048, 128])]; + tensor var_2785_end_mask_0 = const()[name = string("op_2785_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_2785_squeeze_mask_0 = const()[name = string("op_2785_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_2785_cast_fp16 = slice_by_index(begin = var_2785_begin_0, end = var_2785_end_0, end_mask = var_2785_end_mask_0, squeeze_mask = var_2785_squeeze_mask_0, x = coreml_update_state_85)[name = string("op_2785_cast_fp16")]; + tensor var_2788_begin_0 = const()[name = string("op_2788_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_2788_end_mask_0 = const()[name = string("op_2788_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_2788_cast_fp16 = slice_by_index(begin = var_2788_begin_0, end = concat_11, end_mask = var_2788_end_mask_0, x = var_2785_cast_fp16)[name = string("op_2788_cast_fp16")]; + tensor var_2790_shape_cast_fp16 = shape(x = var_2783_cast_fp16)[name = string("op_2790_shape_cast_fp16")]; + int32 gather_265 = const()[name = string("gather_265"), val = int32(1)]; + int32 gather_266 = const()[name = string("gather_266"), val = int32(8)]; + int32 gather_267_axis_0 = const()[name = string("gather_267_axis_0"), val = int32(0)]; + int32 gather_267_batch_dims_0 = const()[name = string("gather_267_batch_dims_0"), val = int32(0)]; + bool gather_267_validate_indices_0 = const()[name = string("gather_267_validate_indices_0"), val = bool(false)]; + string var_2790_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_2790_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_267_to_uint16 = const()[name = string("select_267_to_uint16"), val = uint16(2)]; + tensor var_2790_shape_cast_fp16_to_uint16 = cast(dtype = var_2790_shape_cast_fp16_to_uint16_dtype_0, x = var_2790_shape_cast_fp16)[name = string("cast_110")]; + uint16 gather_267_cast_uint16 = gather(axis = gather_267_axis_0, batch_dims = gather_267_batch_dims_0, indices = select_267_to_uint16, validate_indices = gather_267_validate_indices_0, x = var_2790_shape_cast_fp16_to_uint16)[name = string("gather_267_cast_uint16")]; + string gather_267_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_267_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_268 = const()[name = string("gather_268"), val = int32(128)]; + tensor var_2797_axes_0 = const()[name = string("op_2797_axes_0"), val = tensor([2])]; + tensor var_2797_cast_fp16 = expand_dims(axes = var_2797_axes_0, x = var_2783_cast_fp16)[name = string("op_2797_cast_fp16")]; + tensor shape_297_cast_fp16 = shape(x = var_2797_cast_fp16)[name = string("shape_297_cast_fp16")]; + int32 concat_279_axis_0 = const()[name = string("concat_279_axis_0"), val = int32(0)]; + bool concat_279_interleave_0 = const()[name = string("concat_279_interleave_0"), val = bool(false)]; + int32 gather_267_cast_uint16_to_int32 = cast(dtype = gather_267_cast_uint16_to_int32_dtype_0, x = gather_267_cast_uint16)[name = string("cast_109")]; + tensor concat_279 = concat(axis = concat_279_axis_0, interleave = concat_279_interleave_0, values = (gather_265, gather_266, var_81, gather_267_cast_uint16_to_int32, gather_268))[name = string("concat_279")]; + tensor real_div_28 = real_div(x = concat_279, y = shape_297_cast_fp16)[name = string("real_div_28")]; + tensor hidden_states_431_cast_fp16 = tile(reps = real_div_28, x = var_2797_cast_fp16)[name = string("hidden_states_431_cast_fp16")]; + tensor concat_280x = const()[name = string("concat_280x"), val = tensor([1, 24, -1, 128])]; + tensor key_states_59_cast_fp16 = reshape(shape = concat_280x, x = hidden_states_431_cast_fp16)[name = string("key_states_59_cast_fp16")]; + tensor var_2807_shape_cast_fp16 = shape(x = var_2788_cast_fp16)[name = string("op_2807_shape_cast_fp16")]; + int32 gather_269 = const()[name = string("gather_269"), val = int32(1)]; + int32 gather_270 = const()[name = string("gather_270"), val = int32(8)]; + int32 gather_271_axis_0 = const()[name = string("gather_271_axis_0"), val = int32(0)]; + int32 gather_271_batch_dims_0 = const()[name = string("gather_271_batch_dims_0"), val = int32(0)]; + bool gather_271_validate_indices_0 = const()[name = string("gather_271_validate_indices_0"), val = bool(false)]; + string var_2807_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_2807_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_271_to_uint16 = const()[name = string("select_271_to_uint16"), val = uint16(2)]; + tensor var_2807_shape_cast_fp16_to_uint16 = cast(dtype = var_2807_shape_cast_fp16_to_uint16_dtype_0, x = var_2807_shape_cast_fp16)[name = string("cast_108")]; + uint16 gather_271_cast_uint16 = gather(axis = gather_271_axis_0, batch_dims = gather_271_batch_dims_0, indices = select_271_to_uint16, validate_indices = gather_271_validate_indices_0, x = var_2807_shape_cast_fp16_to_uint16)[name = string("gather_271_cast_uint16")]; + string gather_271_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_271_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_272 = const()[name = string("gather_272"), val = int32(128)]; + tensor var_2814_axes_0 = const()[name = string("op_2814_axes_0"), val = tensor([2])]; + tensor var_2814_cast_fp16 = expand_dims(axes = var_2814_axes_0, x = var_2788_cast_fp16)[name = string("op_2814_cast_fp16")]; + tensor shape_302_cast_fp16 = shape(x = var_2814_cast_fp16)[name = string("shape_302_cast_fp16")]; + int32 concat_281_axis_0 = const()[name = string("concat_281_axis_0"), val = int32(0)]; + bool concat_281_interleave_0 = const()[name = string("concat_281_interleave_0"), val = bool(false)]; + int32 gather_271_cast_uint16_to_int32 = cast(dtype = gather_271_cast_uint16_to_int32_dtype_0, x = gather_271_cast_uint16)[name = string("cast_107")]; + tensor concat_281 = concat(axis = concat_281_axis_0, interleave = concat_281_interleave_0, values = (gather_269, gather_270, var_81, gather_271_cast_uint16_to_int32, gather_272))[name = string("concat_281")]; + tensor real_div_29 = real_div(x = concat_281, y = shape_302_cast_fp16)[name = string("real_div_29")]; + tensor hidden_states_435_cast_fp16 = tile(reps = real_div_29, x = var_2814_cast_fp16)[name = string("hidden_states_435_cast_fp16")]; + tensor concat_282x = const()[name = string("concat_282x"), val = tensor([1, 24, -1, 128])]; + tensor value_states_59_cast_fp16 = reshape(shape = concat_282x, x = hidden_states_435_cast_fp16)[name = string("value_states_59_cast_fp16")]; + tensor var_2824_shape_cast_fp16 = shape(x = key_states_59_cast_fp16)[name = string("op_2824_shape_cast_fp16")]; + int32 gather_273_axis_0 = const()[name = string("gather_273_axis_0"), val = int32(0)]; + int32 gather_273_batch_dims_0 = const()[name = string("gather_273_batch_dims_0"), val = int32(0)]; + bool gather_273_validate_indices_0 = const()[name = string("gather_273_validate_indices_0"), val = bool(false)]; + string var_2824_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_2824_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_273_to_uint16 = const()[name = string("select_273_to_uint16"), val = uint16(2)]; + tensor var_2824_shape_cast_fp16_to_uint16 = cast(dtype = var_2824_shape_cast_fp16_to_uint16_dtype_0, x = var_2824_shape_cast_fp16)[name = string("cast_106")]; + uint16 gather_273_cast_uint16 = gather(axis = gather_273_axis_0, batch_dims = gather_273_batch_dims_0, indices = select_273_to_uint16, validate_indices = gather_273_validate_indices_0, x = var_2824_shape_cast_fp16_to_uint16)[name = string("gather_273_cast_uint16")]; + string gather_273_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_273_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 concat_283_values0_0 = const()[name = string("concat_283_values0_0"), val = int32(1)]; + int32 concat_283_values1_0 = const()[name = string("concat_283_values1_0"), val = int32(1)]; + int32 concat_283_values2_0 = const()[name = string("concat_283_values2_0"), val = int32(0)]; + int32 concat_283_axis_0 = const()[name = string("concat_283_axis_0"), val = int32(0)]; + bool concat_283_interleave_0 = const()[name = string("concat_283_interleave_0"), val = bool(false)]; + int32 gather_273_cast_uint16_to_int32 = cast(dtype = gather_273_cast_uint16_to_int32_dtype_0, x = gather_273_cast_uint16)[name = string("cast_105")]; + tensor concat_283 = concat(axis = concat_283_axis_0, interleave = concat_283_interleave_0, values = (concat_283_values0_0, concat_283_values1_0, concat_283_values2_0, gather_273_cast_uint16_to_int32))[name = string("concat_283")]; + tensor causal_mask_31_begin_0 = const()[name = string("causal_mask_31_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor causal_mask_31_end_mask_0 = const()[name = string("causal_mask_31_end_mask_0"), val = tensor([true, true, true, false])]; + tensor causal_mask_31_cast_fp16 = slice_by_index(begin = causal_mask_31_begin_0, end = concat_283, end_mask = causal_mask_31_end_mask_0, x = causal_mask)[name = string("causal_mask_31_cast_fp16")]; + tensor attn_output_57_cast_fp16 = scaled_dot_product_attention(attn_mask = causal_mask_31_cast_fp16, key = key_states_59_cast_fp16, query = query_states_59_cast_fp16, value = value_states_59_cast_fp16)[name = string("attn_output_57_cast_fp16")]; + tensor var_2830_perm_0 = const()[name = string("op_2830_perm_0"), val = tensor([0, 2, 1, 3])]; + int32 concat_284_axis_0 = const()[name = string("concat_284_axis_0"), val = int32(0)]; + bool concat_284_interleave_0 = const()[name = string("concat_284_interleave_0"), val = bool(false)]; + int32 gather_257_cast_uint16_to_int32 = cast(dtype = gather_257_cast_uint16_to_int32_dtype_0, x = gather_257_cast_uint16)[name = string("cast_104")]; + tensor concat_284 = concat(axis = concat_284_axis_0, interleave = concat_284_interleave_0, values = (gather_256, gather_257_cast_uint16_to_int32, var_72))[name = string("concat_284")]; + tensor var_2830_cast_fp16 = transpose(perm = var_2830_perm_0, x = attn_output_57_cast_fp16)[name = string("transpose_52")]; + tensor input_113_cast_fp16 = reshape(shape = concat_284, x = var_2830_cast_fp16)[name = string("input_113_cast_fp16")]; + tensor model_model_layers_14_self_attn_o_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1023415296))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1028133952))))[name = string("model_model_layers_14_self_attn_o_proj_weight_to_fp16_quantized")]; + tensor linear_101_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_14_self_attn_o_proj_weight_to_fp16_quantized, x = input_113_cast_fp16)[name = string("linear_101_cast_fp16")]; + tensor hidden_states_439_cast_fp16 = add(x = hidden_states_419_cast_fp16, y = linear_101_cast_fp16)[name = string("hidden_states_439_cast_fp16")]; + fp16 var_78_promoted_29_to_fp16 = const()[name = string("op_78_promoted_29_to_fp16"), val = fp16(0x1p+1)]; + tensor var_2839_cast_fp16 = pow(x = hidden_states_439_cast_fp16, y = var_78_promoted_29_to_fp16)[name = string("op_2839_cast_fp16")]; + tensor variance_59_axes_0 = const()[name = string("variance_59_axes_0"), val = tensor([-1])]; + bool variance_59_keep_dims_0 = const()[name = string("variance_59_keep_dims_0"), val = bool(true)]; + tensor variance_59_cast_fp16 = reduce_mean(axes = variance_59_axes_0, keep_dims = variance_59_keep_dims_0, x = var_2839_cast_fp16)[name = string("variance_59_cast_fp16")]; + fp16 var_2842_to_fp16 = const()[name = string("op_2842_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_2843_cast_fp16 = add(x = variance_59_cast_fp16, y = var_2842_to_fp16)[name = string("op_2843_cast_fp16")]; + fp32 var_2844_epsilon_0 = const()[name = string("op_2844_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_2844_cast_fp16 = rsqrt(epsilon = var_2844_epsilon_0, x = var_2843_cast_fp16)[name = string("op_2844_cast_fp16")]; + tensor hidden_states_443_cast_fp16 = mul(x = hidden_states_439_cast_fp16, y = var_2844_cast_fp16)[name = string("hidden_states_443_cast_fp16")]; + tensor model_model_layers_14_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_14_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1028723840)))]; + tensor input_115_cast_fp16 = mul(x = model_model_layers_14_post_attention_layernorm_weight_to_fp16, y = hidden_states_443_cast_fp16)[name = string("input_115_cast_fp16")]; + tensor model_model_layers_14_mlp_gate_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1028730048))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1041313024))))[name = string("model_model_layers_14_mlp_gate_proj_weight_to_fp16_quantized")]; + tensor linear_102_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_14_mlp_gate_proj_weight_to_fp16_quantized, x = input_115_cast_fp16)[name = string("linear_102_cast_fp16")]; + tensor var_2856_cast_fp16 = silu(x = linear_102_cast_fp16)[name = string("op_2856_cast_fp16")]; + tensor model_model_layers_14_mlp_up_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1042885952))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1055468928))))[name = string("model_model_layers_14_mlp_up_proj_weight_to_fp16_quantized")]; + tensor linear_103_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_14_mlp_up_proj_weight_to_fp16_quantized, x = input_115_cast_fp16)[name = string("linear_103_cast_fp16")]; + tensor input_119_cast_fp16 = mul(x = var_2856_cast_fp16, y = linear_103_cast_fp16)[name = string("input_119_cast_fp16")]; + tensor model_model_layers_14_mlp_down_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1057041856))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1069624832))))[name = string("model_model_layers_14_mlp_down_proj_weight_to_fp16_quantized")]; + tensor linear_104_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_14_mlp_down_proj_weight_to_fp16_quantized, x = input_119_cast_fp16)[name = string("linear_104_cast_fp16")]; + tensor hidden_states_449_cast_fp16 = add(x = hidden_states_439_cast_fp16, y = linear_104_cast_fp16)[name = string("hidden_states_449_cast_fp16")]; + fp16 var_78_promoted_30_to_fp16 = const()[name = string("op_78_promoted_30_to_fp16"), val = fp16(0x1p+1)]; + tensor var_2869_cast_fp16 = pow(x = hidden_states_449_cast_fp16, y = var_78_promoted_30_to_fp16)[name = string("op_2869_cast_fp16")]; + tensor variance_61_axes_0 = const()[name = string("variance_61_axes_0"), val = tensor([-1])]; + bool variance_61_keep_dims_0 = const()[name = string("variance_61_keep_dims_0"), val = bool(true)]; + tensor variance_61_cast_fp16 = reduce_mean(axes = variance_61_axes_0, keep_dims = variance_61_keep_dims_0, x = var_2869_cast_fp16)[name = string("variance_61_cast_fp16")]; + fp16 var_2872_to_fp16 = const()[name = string("op_2872_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_2873_cast_fp16 = add(x = variance_61_cast_fp16, y = var_2872_to_fp16)[name = string("op_2873_cast_fp16")]; + fp32 var_2874_epsilon_0 = const()[name = string("op_2874_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_2874_cast_fp16 = rsqrt(epsilon = var_2874_epsilon_0, x = var_2873_cast_fp16)[name = string("op_2874_cast_fp16")]; + tensor hidden_states_453_cast_fp16 = mul(x = hidden_states_449_cast_fp16, y = var_2874_cast_fp16)[name = string("hidden_states_453_cast_fp16")]; + tensor model_model_layers_15_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_15_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1071197760)))]; + tensor hidden_states_457_cast_fp16 = mul(x = model_model_layers_15_input_layernorm_weight_to_fp16, y = hidden_states_453_cast_fp16)[name = string("hidden_states_457_cast_fp16")]; + tensor var_2885_shape_cast_fp16 = shape(x = hidden_states_457_cast_fp16)[name = string("op_2885_shape_cast_fp16")]; + int32 gather_274 = const()[name = string("gather_274"), val = int32(1)]; + int32 gather_275_axis_0 = const()[name = string("gather_275_axis_0"), val = int32(0)]; + int32 gather_275_batch_dims_0 = const()[name = string("gather_275_batch_dims_0"), val = int32(0)]; + bool gather_275_validate_indices_0 = const()[name = string("gather_275_validate_indices_0"), val = bool(false)]; + string var_2885_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_2885_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_275_to_uint16 = const()[name = string("select_275_to_uint16"), val = uint16(1)]; + tensor var_2885_shape_cast_fp16_to_uint16 = cast(dtype = var_2885_shape_cast_fp16_to_uint16_dtype_0, x = var_2885_shape_cast_fp16)[name = string("cast_103")]; + uint16 gather_275_cast_uint16 = gather(axis = gather_275_axis_0, batch_dims = gather_275_batch_dims_0, indices = select_275_to_uint16, validate_indices = gather_275_validate_indices_0, x = var_2885_shape_cast_fp16_to_uint16)[name = string("gather_275_cast_uint16")]; + string gather_275_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_275_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor model_model_layers_15_self_attn_q_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1071203968))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1075922624))))[name = string("model_model_layers_15_self_attn_q_proj_weight_to_fp16_quantized")]; + tensor linear_105_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_15_self_attn_q_proj_weight_to_fp16_quantized, x = hidden_states_457_cast_fp16)[name = string("linear_105_cast_fp16")]; + tensor model_model_layers_15_self_attn_k_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1076512512))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1078085440))))[name = string("model_model_layers_15_self_attn_k_proj_weight_to_fp16_quantized")]; + tensor linear_106_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_15_self_attn_k_proj_weight_to_fp16_quantized, x = hidden_states_457_cast_fp16)[name = string("linear_106_cast_fp16")]; + tensor model_model_layers_15_self_attn_v_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1078282112))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1079855040))))[name = string("model_model_layers_15_self_attn_v_proj_weight_to_fp16_quantized")]; + tensor linear_107_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_15_self_attn_v_proj_weight_to_fp16_quantized, x = hidden_states_457_cast_fp16)[name = string("linear_107_cast_fp16")]; + tensor concat_285x = const()[name = string("concat_285x"), val = tensor([1, -1, 24, 128])]; + tensor var_2894_cast_fp16 = reshape(shape = concat_285x, x = linear_105_cast_fp16)[name = string("op_2894_cast_fp16")]; + tensor q_31_perm_0 = const()[name = string("q_31_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_286x = const()[name = string("concat_286x"), val = tensor([1, -1, 8, 128])]; + tensor var_2897_cast_fp16 = reshape(shape = concat_286x, x = linear_106_cast_fp16)[name = string("op_2897_cast_fp16")]; + tensor k_31_perm_0 = const()[name = string("k_31_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_287x = const()[name = string("concat_287x"), val = tensor([1, -1, 8, 128])]; + tensor var_2900_cast_fp16 = reshape(shape = concat_287x, x = linear_107_cast_fp16)[name = string("op_2900_cast_fp16")]; + tensor v_state_31_perm_0 = const()[name = string("v_state_31_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor q_31_cast_fp16 = transpose(perm = q_31_perm_0, x = var_2894_cast_fp16)[name = string("transpose_51")]; + tensor var_2904_cast_fp16 = mul(x = q_31_cast_fp16, y = cos_7_cast_fp16)[name = string("op_2904_cast_fp16")]; + tensor x1_61_begin_0 = const()[name = string("x1_61_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_61_end_0 = const()[name = string("x1_61_end_0"), val = tensor([1, 24, 0, 64])]; + tensor x1_61_end_mask_0 = const()[name = string("x1_61_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_61_cast_fp16 = slice_by_index(begin = x1_61_begin_0, end = x1_61_end_0, end_mask = x1_61_end_mask_0, x = q_31_cast_fp16)[name = string("x1_61_cast_fp16")]; + tensor x2_61_begin_0 = const()[name = string("x2_61_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_61_end_0 = const()[name = string("x2_61_end_0"), val = tensor([1, 24, 0, 128])]; + tensor x2_61_end_mask_0 = const()[name = string("x2_61_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_61_cast_fp16 = slice_by_index(begin = x2_61_begin_0, end = x2_61_end_0, end_mask = x2_61_end_mask_0, x = q_31_cast_fp16)[name = string("x2_61_cast_fp16")]; + fp16 const_33_promoted_to_fp16 = const()[name = string("const_33_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_2915_cast_fp16 = mul(x = x2_61_cast_fp16, y = const_33_promoted_to_fp16)[name = string("op_2915_cast_fp16")]; + bool var_2917_interleave_0 = const()[name = string("op_2917_interleave_0"), val = bool(false)]; + tensor var_2917_cast_fp16 = concat(axis = var_72, interleave = var_2917_interleave_0, values = (var_2915_cast_fp16, x1_61_cast_fp16))[name = string("op_2917_cast_fp16")]; + tensor var_2918_cast_fp16 = mul(x = var_2917_cast_fp16, y = sin_7_cast_fp16)[name = string("op_2918_cast_fp16")]; + tensor query_states_63_cast_fp16 = add(x = var_2904_cast_fp16, y = var_2918_cast_fp16)[name = string("query_states_63_cast_fp16")]; + tensor k_31_cast_fp16 = transpose(perm = k_31_perm_0, x = var_2897_cast_fp16)[name = string("transpose_50")]; + tensor var_2920_cast_fp16 = mul(x = k_31_cast_fp16, y = cos_7_cast_fp16)[name = string("op_2920_cast_fp16")]; + tensor x1_63_begin_0 = const()[name = string("x1_63_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_63_end_0 = const()[name = string("x1_63_end_0"), val = tensor([1, 8, 0, 64])]; + tensor x1_63_end_mask_0 = const()[name = string("x1_63_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_63_cast_fp16 = slice_by_index(begin = x1_63_begin_0, end = x1_63_end_0, end_mask = x1_63_end_mask_0, x = k_31_cast_fp16)[name = string("x1_63_cast_fp16")]; + tensor x2_63_begin_0 = const()[name = string("x2_63_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_63_end_0 = const()[name = string("x2_63_end_0"), val = tensor([1, 8, 0, 128])]; + tensor x2_63_end_mask_0 = const()[name = string("x2_63_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_63_cast_fp16 = slice_by_index(begin = x2_63_begin_0, end = x2_63_end_0, end_mask = x2_63_end_mask_0, x = k_31_cast_fp16)[name = string("x2_63_cast_fp16")]; + fp16 const_34_promoted_to_fp16 = const()[name = string("const_34_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_2931_cast_fp16 = mul(x = x2_63_cast_fp16, y = const_34_promoted_to_fp16)[name = string("op_2931_cast_fp16")]; + bool var_2933_interleave_0 = const()[name = string("op_2933_interleave_0"), val = bool(false)]; + tensor var_2933_cast_fp16 = concat(axis = var_72, interleave = var_2933_interleave_0, values = (var_2931_cast_fp16, x1_63_cast_fp16))[name = string("op_2933_cast_fp16")]; + tensor var_2934_cast_fp16 = mul(x = var_2933_cast_fp16, y = sin_7_cast_fp16)[name = string("op_2934_cast_fp16")]; + tensor k_state_31_cast_fp16 = add(x = var_2920_cast_fp16, y = var_2934_cast_fp16)[name = string("k_state_31_cast_fp16")]; + tensor expand_dims_180 = const()[name = string("expand_dims_180"), val = tensor([0])]; + tensor expand_dims_181 = const()[name = string("expand_dims_181"), val = tensor([0])]; + tensor expand_dims_183 = const()[name = string("expand_dims_183"), val = tensor([0])]; + tensor concat_290_values0_0 = const()[name = string("concat_290_values0_0"), val = tensor([15])]; + int32 concat_290_axis_0 = const()[name = string("concat_290_axis_0"), val = int32(0)]; + bool concat_290_interleave_0 = const()[name = string("concat_290_interleave_0"), val = bool(false)]; + tensor concat_290 = concat(axis = concat_290_axis_0, interleave = concat_290_interleave_0, values = (concat_290_values0_0, expand_dims_180, expand_dims_181, expand_dims_2, expand_dims_183))[name = string("concat_290")]; + tensor key_cache_internal_tensor_assign_16_stride_0 = const()[name = string("key_cache_internal_tensor_assign_16_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor key_cache_internal_tensor_assign_16_begin_mask_0 = const()[name = string("key_cache_internal_tensor_assign_16_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_16_end_mask_0 = const()[name = string("key_cache_internal_tensor_assign_16_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor key_cache_internal_tensor_assign_16_squeeze_mask_0 = const()[name = string("key_cache_internal_tensor_assign_16_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_16_cast_fp16 = slice_update(begin = concat_290, begin_mask = key_cache_internal_tensor_assign_16_begin_mask_0, end = concat_6, end_mask = key_cache_internal_tensor_assign_16_end_mask_0, squeeze_mask = key_cache_internal_tensor_assign_16_squeeze_mask_0, stride = key_cache_internal_tensor_assign_16_stride_0, update = k_state_31_cast_fp16, x = coreml_update_state_84)[name = string("key_cache_internal_tensor_assign_16_cast_fp16")]; + write_state(data = key_cache_internal_tensor_assign_16_cast_fp16, input = key_cache)[name = string("coreml_update_state_86_write_state")]; + tensor coreml_update_state_86 = read_state(input = key_cache)[name = string("coreml_update_state_86")]; + tensor value_cache_internal_tensor_assign_16_stride_0 = const()[name = string("value_cache_internal_tensor_assign_16_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor value_cache_internal_tensor_assign_16_begin_mask_0 = const()[name = string("value_cache_internal_tensor_assign_16_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor value_cache_internal_tensor_assign_16_end_mask_0 = const()[name = string("value_cache_internal_tensor_assign_16_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor value_cache_internal_tensor_assign_16_squeeze_mask_0 = const()[name = string("value_cache_internal_tensor_assign_16_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor v_state_31_cast_fp16 = transpose(perm = v_state_31_perm_0, x = var_2900_cast_fp16)[name = string("transpose_49")]; + tensor value_cache_internal_tensor_assign_16_cast_fp16 = slice_update(begin = concat_290, begin_mask = value_cache_internal_tensor_assign_16_begin_mask_0, end = concat_6, end_mask = value_cache_internal_tensor_assign_16_end_mask_0, squeeze_mask = value_cache_internal_tensor_assign_16_squeeze_mask_0, stride = value_cache_internal_tensor_assign_16_stride_0, update = v_state_31_cast_fp16, x = coreml_update_state_85)[name = string("value_cache_internal_tensor_assign_16_cast_fp16")]; + write_state(data = value_cache_internal_tensor_assign_16_cast_fp16, input = value_cache)[name = string("coreml_update_state_87_write_state")]; + tensor coreml_update_state_87 = read_state(input = value_cache)[name = string("coreml_update_state_87")]; + tensor var_2957_begin_0 = const()[name = string("op_2957_begin_0"), val = tensor([15, 0, 0, 0, 0])]; + tensor var_2957_end_0 = const()[name = string("op_2957_end_0"), val = tensor([16, 1, 8, 2048, 128])]; + tensor var_2957_end_mask_0 = const()[name = string("op_2957_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_2957_squeeze_mask_0 = const()[name = string("op_2957_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_2957_cast_fp16 = slice_by_index(begin = var_2957_begin_0, end = var_2957_end_0, end_mask = var_2957_end_mask_0, squeeze_mask = var_2957_squeeze_mask_0, x = coreml_update_state_86)[name = string("op_2957_cast_fp16")]; + tensor var_2960_begin_0 = const()[name = string("op_2960_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_2960_end_mask_0 = const()[name = string("op_2960_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_2960_cast_fp16 = slice_by_index(begin = var_2960_begin_0, end = concat_11, end_mask = var_2960_end_mask_0, x = var_2957_cast_fp16)[name = string("op_2960_cast_fp16")]; + tensor var_2962_begin_0 = const()[name = string("op_2962_begin_0"), val = tensor([15, 0, 0, 0, 0])]; + tensor var_2962_end_0 = const()[name = string("op_2962_end_0"), val = tensor([16, 1, 8, 2048, 128])]; + tensor var_2962_end_mask_0 = const()[name = string("op_2962_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_2962_squeeze_mask_0 = const()[name = string("op_2962_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_2962_cast_fp16 = slice_by_index(begin = var_2962_begin_0, end = var_2962_end_0, end_mask = var_2962_end_mask_0, squeeze_mask = var_2962_squeeze_mask_0, x = coreml_update_state_87)[name = string("op_2962_cast_fp16")]; + tensor var_2965_begin_0 = const()[name = string("op_2965_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_2965_end_mask_0 = const()[name = string("op_2965_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_2965_cast_fp16 = slice_by_index(begin = var_2965_begin_0, end = concat_11, end_mask = var_2965_end_mask_0, x = var_2962_cast_fp16)[name = string("op_2965_cast_fp16")]; + tensor var_2967_shape_cast_fp16 = shape(x = var_2960_cast_fp16)[name = string("op_2967_shape_cast_fp16")]; + int32 gather_283 = const()[name = string("gather_283"), val = int32(1)]; + int32 gather_284 = const()[name = string("gather_284"), val = int32(8)]; + int32 gather_285_axis_0 = const()[name = string("gather_285_axis_0"), val = int32(0)]; + int32 gather_285_batch_dims_0 = const()[name = string("gather_285_batch_dims_0"), val = int32(0)]; + bool gather_285_validate_indices_0 = const()[name = string("gather_285_validate_indices_0"), val = bool(false)]; + string var_2967_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_2967_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_285_to_uint16 = const()[name = string("select_285_to_uint16"), val = uint16(2)]; + tensor var_2967_shape_cast_fp16_to_uint16 = cast(dtype = var_2967_shape_cast_fp16_to_uint16_dtype_0, x = var_2967_shape_cast_fp16)[name = string("cast_102")]; + uint16 gather_285_cast_uint16 = gather(axis = gather_285_axis_0, batch_dims = gather_285_batch_dims_0, indices = select_285_to_uint16, validate_indices = gather_285_validate_indices_0, x = var_2967_shape_cast_fp16_to_uint16)[name = string("gather_285_cast_uint16")]; + string gather_285_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_285_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_286 = const()[name = string("gather_286"), val = int32(128)]; + tensor var_2974_axes_0 = const()[name = string("op_2974_axes_0"), val = tensor([2])]; + tensor var_2974_cast_fp16 = expand_dims(axes = var_2974_axes_0, x = var_2960_cast_fp16)[name = string("op_2974_cast_fp16")]; + tensor shape_317_cast_fp16 = shape(x = var_2974_cast_fp16)[name = string("shape_317_cast_fp16")]; + int32 concat_298_axis_0 = const()[name = string("concat_298_axis_0"), val = int32(0)]; + bool concat_298_interleave_0 = const()[name = string("concat_298_interleave_0"), val = bool(false)]; + int32 gather_285_cast_uint16_to_int32 = cast(dtype = gather_285_cast_uint16_to_int32_dtype_0, x = gather_285_cast_uint16)[name = string("cast_101")]; + tensor concat_298 = concat(axis = concat_298_axis_0, interleave = concat_298_interleave_0, values = (gather_283, gather_284, var_81, gather_285_cast_uint16_to_int32, gather_286))[name = string("concat_298")]; + tensor real_div_30 = real_div(x = concat_298, y = shape_317_cast_fp16)[name = string("real_div_30")]; + tensor hidden_states_461_cast_fp16 = tile(reps = real_div_30, x = var_2974_cast_fp16)[name = string("hidden_states_461_cast_fp16")]; + tensor concat_299x = const()[name = string("concat_299x"), val = tensor([1, 24, -1, 128])]; + tensor key_states_63_cast_fp16 = reshape(shape = concat_299x, x = hidden_states_461_cast_fp16)[name = string("key_states_63_cast_fp16")]; + tensor var_2984_shape_cast_fp16 = shape(x = var_2965_cast_fp16)[name = string("op_2984_shape_cast_fp16")]; + int32 gather_287 = const()[name = string("gather_287"), val = int32(1)]; + int32 gather_288 = const()[name = string("gather_288"), val = int32(8)]; + int32 gather_289_axis_0 = const()[name = string("gather_289_axis_0"), val = int32(0)]; + int32 gather_289_batch_dims_0 = const()[name = string("gather_289_batch_dims_0"), val = int32(0)]; + bool gather_289_validate_indices_0 = const()[name = string("gather_289_validate_indices_0"), val = bool(false)]; + string var_2984_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_2984_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_289_to_uint16 = const()[name = string("select_289_to_uint16"), val = uint16(2)]; + tensor var_2984_shape_cast_fp16_to_uint16 = cast(dtype = var_2984_shape_cast_fp16_to_uint16_dtype_0, x = var_2984_shape_cast_fp16)[name = string("cast_100")]; + uint16 gather_289_cast_uint16 = gather(axis = gather_289_axis_0, batch_dims = gather_289_batch_dims_0, indices = select_289_to_uint16, validate_indices = gather_289_validate_indices_0, x = var_2984_shape_cast_fp16_to_uint16)[name = string("gather_289_cast_uint16")]; + string gather_289_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_289_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_290 = const()[name = string("gather_290"), val = int32(128)]; + tensor var_2991_axes_0 = const()[name = string("op_2991_axes_0"), val = tensor([2])]; + tensor var_2991_cast_fp16 = expand_dims(axes = var_2991_axes_0, x = var_2965_cast_fp16)[name = string("op_2991_cast_fp16")]; + tensor shape_322_cast_fp16 = shape(x = var_2991_cast_fp16)[name = string("shape_322_cast_fp16")]; + int32 concat_300_axis_0 = const()[name = string("concat_300_axis_0"), val = int32(0)]; + bool concat_300_interleave_0 = const()[name = string("concat_300_interleave_0"), val = bool(false)]; + int32 gather_289_cast_uint16_to_int32 = cast(dtype = gather_289_cast_uint16_to_int32_dtype_0, x = gather_289_cast_uint16)[name = string("cast_99")]; + tensor concat_300 = concat(axis = concat_300_axis_0, interleave = concat_300_interleave_0, values = (gather_287, gather_288, var_81, gather_289_cast_uint16_to_int32, gather_290))[name = string("concat_300")]; + tensor real_div_31 = real_div(x = concat_300, y = shape_322_cast_fp16)[name = string("real_div_31")]; + tensor hidden_states_465_cast_fp16 = tile(reps = real_div_31, x = var_2991_cast_fp16)[name = string("hidden_states_465_cast_fp16")]; + tensor concat_301x = const()[name = string("concat_301x"), val = tensor([1, 24, -1, 128])]; + tensor value_states_63_cast_fp16 = reshape(shape = concat_301x, x = hidden_states_465_cast_fp16)[name = string("value_states_63_cast_fp16")]; + tensor var_3001_shape_cast_fp16 = shape(x = key_states_63_cast_fp16)[name = string("op_3001_shape_cast_fp16")]; + int32 gather_291_axis_0 = const()[name = string("gather_291_axis_0"), val = int32(0)]; + int32 gather_291_batch_dims_0 = const()[name = string("gather_291_batch_dims_0"), val = int32(0)]; + bool gather_291_validate_indices_0 = const()[name = string("gather_291_validate_indices_0"), val = bool(false)]; + string var_3001_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_3001_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_291_to_uint16 = const()[name = string("select_291_to_uint16"), val = uint16(2)]; + tensor var_3001_shape_cast_fp16_to_uint16 = cast(dtype = var_3001_shape_cast_fp16_to_uint16_dtype_0, x = var_3001_shape_cast_fp16)[name = string("cast_98")]; + uint16 gather_291_cast_uint16 = gather(axis = gather_291_axis_0, batch_dims = gather_291_batch_dims_0, indices = select_291_to_uint16, validate_indices = gather_291_validate_indices_0, x = var_3001_shape_cast_fp16_to_uint16)[name = string("gather_291_cast_uint16")]; + string gather_291_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_291_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 concat_302_values0_0 = const()[name = string("concat_302_values0_0"), val = int32(1)]; + int32 concat_302_values1_0 = const()[name = string("concat_302_values1_0"), val = int32(1)]; + int32 concat_302_values2_0 = const()[name = string("concat_302_values2_0"), val = int32(0)]; + int32 concat_302_axis_0 = const()[name = string("concat_302_axis_0"), val = int32(0)]; + bool concat_302_interleave_0 = const()[name = string("concat_302_interleave_0"), val = bool(false)]; + int32 gather_291_cast_uint16_to_int32 = cast(dtype = gather_291_cast_uint16_to_int32_dtype_0, x = gather_291_cast_uint16)[name = string("cast_97")]; + tensor concat_302 = concat(axis = concat_302_axis_0, interleave = concat_302_interleave_0, values = (concat_302_values0_0, concat_302_values1_0, concat_302_values2_0, gather_291_cast_uint16_to_int32))[name = string("concat_302")]; + tensor causal_mask_33_begin_0 = const()[name = string("causal_mask_33_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor causal_mask_33_end_mask_0 = const()[name = string("causal_mask_33_end_mask_0"), val = tensor([true, true, true, false])]; + tensor causal_mask_33_cast_fp16 = slice_by_index(begin = causal_mask_33_begin_0, end = concat_302, end_mask = causal_mask_33_end_mask_0, x = causal_mask)[name = string("causal_mask_33_cast_fp16")]; + tensor attn_output_61_cast_fp16 = scaled_dot_product_attention(attn_mask = causal_mask_33_cast_fp16, key = key_states_63_cast_fp16, query = query_states_63_cast_fp16, value = value_states_63_cast_fp16)[name = string("attn_output_61_cast_fp16")]; + tensor var_3007_perm_0 = const()[name = string("op_3007_perm_0"), val = tensor([0, 2, 1, 3])]; + int32 concat_303_axis_0 = const()[name = string("concat_303_axis_0"), val = int32(0)]; + bool concat_303_interleave_0 = const()[name = string("concat_303_interleave_0"), val = bool(false)]; + int32 gather_275_cast_uint16_to_int32 = cast(dtype = gather_275_cast_uint16_to_int32_dtype_0, x = gather_275_cast_uint16)[name = string("cast_96")]; + tensor concat_303 = concat(axis = concat_303_axis_0, interleave = concat_303_interleave_0, values = (gather_274, gather_275_cast_uint16_to_int32, var_72))[name = string("concat_303")]; + tensor var_3007_cast_fp16 = transpose(perm = var_3007_perm_0, x = attn_output_61_cast_fp16)[name = string("transpose_48")]; + tensor input_121_cast_fp16 = reshape(shape = concat_303, x = var_3007_cast_fp16)[name = string("input_121_cast_fp16")]; + tensor model_model_layers_15_self_attn_o_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1080051712))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1084770368))))[name = string("model_model_layers_15_self_attn_o_proj_weight_to_fp16_quantized")]; + tensor linear_108_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_15_self_attn_o_proj_weight_to_fp16_quantized, x = input_121_cast_fp16)[name = string("linear_108_cast_fp16")]; + tensor hidden_states_469_cast_fp16 = add(x = hidden_states_449_cast_fp16, y = linear_108_cast_fp16)[name = string("hidden_states_469_cast_fp16")]; + fp16 var_78_promoted_31_to_fp16 = const()[name = string("op_78_promoted_31_to_fp16"), val = fp16(0x1p+1)]; + tensor var_3016_cast_fp16 = pow(x = hidden_states_469_cast_fp16, y = var_78_promoted_31_to_fp16)[name = string("op_3016_cast_fp16")]; + tensor variance_63_axes_0 = const()[name = string("variance_63_axes_0"), val = tensor([-1])]; + bool variance_63_keep_dims_0 = const()[name = string("variance_63_keep_dims_0"), val = bool(true)]; + tensor variance_63_cast_fp16 = reduce_mean(axes = variance_63_axes_0, keep_dims = variance_63_keep_dims_0, x = var_3016_cast_fp16)[name = string("variance_63_cast_fp16")]; + fp16 var_3019_to_fp16 = const()[name = string("op_3019_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_3020_cast_fp16 = add(x = variance_63_cast_fp16, y = var_3019_to_fp16)[name = string("op_3020_cast_fp16")]; + fp32 var_3021_epsilon_0 = const()[name = string("op_3021_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_3021_cast_fp16 = rsqrt(epsilon = var_3021_epsilon_0, x = var_3020_cast_fp16)[name = string("op_3021_cast_fp16")]; + tensor hidden_states_473_cast_fp16 = mul(x = hidden_states_469_cast_fp16, y = var_3021_cast_fp16)[name = string("hidden_states_473_cast_fp16")]; + tensor model_model_layers_15_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_15_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1085360256)))]; + tensor input_123_cast_fp16 = mul(x = model_model_layers_15_post_attention_layernorm_weight_to_fp16, y = hidden_states_473_cast_fp16)[name = string("input_123_cast_fp16")]; + tensor model_model_layers_15_mlp_gate_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1085366464))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1097949440))))[name = string("model_model_layers_15_mlp_gate_proj_weight_to_fp16_quantized")]; + tensor linear_109_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_15_mlp_gate_proj_weight_to_fp16_quantized, x = input_123_cast_fp16)[name = string("linear_109_cast_fp16")]; + tensor var_3033_cast_fp16 = silu(x = linear_109_cast_fp16)[name = string("op_3033_cast_fp16")]; + tensor model_model_layers_15_mlp_up_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1099522368))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1112105344))))[name = string("model_model_layers_15_mlp_up_proj_weight_to_fp16_quantized")]; + tensor linear_110_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_15_mlp_up_proj_weight_to_fp16_quantized, x = input_123_cast_fp16)[name = string("linear_110_cast_fp16")]; + tensor input_127_cast_fp16 = mul(x = var_3033_cast_fp16, y = linear_110_cast_fp16)[name = string("input_127_cast_fp16")]; + tensor model_model_layers_15_mlp_down_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1113678272))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1126261248))))[name = string("model_model_layers_15_mlp_down_proj_weight_to_fp16_quantized")]; + tensor linear_111_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_15_mlp_down_proj_weight_to_fp16_quantized, x = input_127_cast_fp16)[name = string("linear_111_cast_fp16")]; + tensor hidden_states_479_cast_fp16 = add(x = hidden_states_469_cast_fp16, y = linear_111_cast_fp16)[name = string("hidden_states_479_cast_fp16")]; + fp16 var_78_promoted_32_to_fp16 = const()[name = string("op_78_promoted_32_to_fp16"), val = fp16(0x1p+1)]; + tensor var_3046_cast_fp16 = pow(x = hidden_states_479_cast_fp16, y = var_78_promoted_32_to_fp16)[name = string("op_3046_cast_fp16")]; + tensor variance_65_axes_0 = const()[name = string("variance_65_axes_0"), val = tensor([-1])]; + bool variance_65_keep_dims_0 = const()[name = string("variance_65_keep_dims_0"), val = bool(true)]; + tensor variance_65_cast_fp16 = reduce_mean(axes = variance_65_axes_0, keep_dims = variance_65_keep_dims_0, x = var_3046_cast_fp16)[name = string("variance_65_cast_fp16")]; + fp16 var_3049_to_fp16 = const()[name = string("op_3049_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_3050_cast_fp16 = add(x = variance_65_cast_fp16, y = var_3049_to_fp16)[name = string("op_3050_cast_fp16")]; + fp32 var_3051_epsilon_0 = const()[name = string("op_3051_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_3051_cast_fp16 = rsqrt(epsilon = var_3051_epsilon_0, x = var_3050_cast_fp16)[name = string("op_3051_cast_fp16")]; + tensor hidden_states_483_cast_fp16 = mul(x = hidden_states_479_cast_fp16, y = var_3051_cast_fp16)[name = string("hidden_states_483_cast_fp16")]; + tensor model_model_layers_16_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_16_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1127834176)))]; + tensor hidden_states_487_cast_fp16 = mul(x = model_model_layers_16_input_layernorm_weight_to_fp16, y = hidden_states_483_cast_fp16)[name = string("hidden_states_487_cast_fp16")]; + tensor var_3062_shape_cast_fp16 = shape(x = hidden_states_487_cast_fp16)[name = string("op_3062_shape_cast_fp16")]; + int32 gather_292 = const()[name = string("gather_292"), val = int32(1)]; + int32 gather_293_axis_0 = const()[name = string("gather_293_axis_0"), val = int32(0)]; + int32 gather_293_batch_dims_0 = const()[name = string("gather_293_batch_dims_0"), val = int32(0)]; + bool gather_293_validate_indices_0 = const()[name = string("gather_293_validate_indices_0"), val = bool(false)]; + string var_3062_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_3062_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_293_to_uint16 = const()[name = string("select_293_to_uint16"), val = uint16(1)]; + tensor var_3062_shape_cast_fp16_to_uint16 = cast(dtype = var_3062_shape_cast_fp16_to_uint16_dtype_0, x = var_3062_shape_cast_fp16)[name = string("cast_95")]; + uint16 gather_293_cast_uint16 = gather(axis = gather_293_axis_0, batch_dims = gather_293_batch_dims_0, indices = select_293_to_uint16, validate_indices = gather_293_validate_indices_0, x = var_3062_shape_cast_fp16_to_uint16)[name = string("gather_293_cast_uint16")]; + string gather_293_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_293_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor model_model_layers_16_self_attn_q_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1127840384))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1132559040))))[name = string("model_model_layers_16_self_attn_q_proj_weight_to_fp16_quantized")]; + tensor linear_112_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_16_self_attn_q_proj_weight_to_fp16_quantized, x = hidden_states_487_cast_fp16)[name = string("linear_112_cast_fp16")]; + tensor model_model_layers_16_self_attn_k_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1133148928))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1134721856))))[name = string("model_model_layers_16_self_attn_k_proj_weight_to_fp16_quantized")]; + tensor linear_113_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_16_self_attn_k_proj_weight_to_fp16_quantized, x = hidden_states_487_cast_fp16)[name = string("linear_113_cast_fp16")]; + tensor model_model_layers_16_self_attn_v_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1134918528))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1136491456))))[name = string("model_model_layers_16_self_attn_v_proj_weight_to_fp16_quantized")]; + tensor linear_114_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_16_self_attn_v_proj_weight_to_fp16_quantized, x = hidden_states_487_cast_fp16)[name = string("linear_114_cast_fp16")]; + tensor concat_304x = const()[name = string("concat_304x"), val = tensor([1, -1, 24, 128])]; + tensor var_3071_cast_fp16 = reshape(shape = concat_304x, x = linear_112_cast_fp16)[name = string("op_3071_cast_fp16")]; + tensor q_33_perm_0 = const()[name = string("q_33_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_305x = const()[name = string("concat_305x"), val = tensor([1, -1, 8, 128])]; + tensor var_3074_cast_fp16 = reshape(shape = concat_305x, x = linear_113_cast_fp16)[name = string("op_3074_cast_fp16")]; + tensor k_33_perm_0 = const()[name = string("k_33_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_306x = const()[name = string("concat_306x"), val = tensor([1, -1, 8, 128])]; + tensor var_3077_cast_fp16 = reshape(shape = concat_306x, x = linear_114_cast_fp16)[name = string("op_3077_cast_fp16")]; + tensor v_state_33_perm_0 = const()[name = string("v_state_33_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor q_33_cast_fp16 = transpose(perm = q_33_perm_0, x = var_3071_cast_fp16)[name = string("transpose_47")]; + tensor var_3081_cast_fp16 = mul(x = q_33_cast_fp16, y = cos_7_cast_fp16)[name = string("op_3081_cast_fp16")]; + tensor x1_65_begin_0 = const()[name = string("x1_65_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_65_end_0 = const()[name = string("x1_65_end_0"), val = tensor([1, 24, 0, 64])]; + tensor x1_65_end_mask_0 = const()[name = string("x1_65_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_65_cast_fp16 = slice_by_index(begin = x1_65_begin_0, end = x1_65_end_0, end_mask = x1_65_end_mask_0, x = q_33_cast_fp16)[name = string("x1_65_cast_fp16")]; + tensor x2_65_begin_0 = const()[name = string("x2_65_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_65_end_0 = const()[name = string("x2_65_end_0"), val = tensor([1, 24, 0, 128])]; + tensor x2_65_end_mask_0 = const()[name = string("x2_65_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_65_cast_fp16 = slice_by_index(begin = x2_65_begin_0, end = x2_65_end_0, end_mask = x2_65_end_mask_0, x = q_33_cast_fp16)[name = string("x2_65_cast_fp16")]; + fp16 const_35_promoted_to_fp16 = const()[name = string("const_35_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_3092_cast_fp16 = mul(x = x2_65_cast_fp16, y = const_35_promoted_to_fp16)[name = string("op_3092_cast_fp16")]; + bool var_3094_interleave_0 = const()[name = string("op_3094_interleave_0"), val = bool(false)]; + tensor var_3094_cast_fp16 = concat(axis = var_72, interleave = var_3094_interleave_0, values = (var_3092_cast_fp16, x1_65_cast_fp16))[name = string("op_3094_cast_fp16")]; + tensor var_3095_cast_fp16 = mul(x = var_3094_cast_fp16, y = sin_7_cast_fp16)[name = string("op_3095_cast_fp16")]; + tensor query_states_67_cast_fp16 = add(x = var_3081_cast_fp16, y = var_3095_cast_fp16)[name = string("query_states_67_cast_fp16")]; + tensor k_33_cast_fp16 = transpose(perm = k_33_perm_0, x = var_3074_cast_fp16)[name = string("transpose_46")]; + tensor var_3097_cast_fp16 = mul(x = k_33_cast_fp16, y = cos_7_cast_fp16)[name = string("op_3097_cast_fp16")]; + tensor x1_67_begin_0 = const()[name = string("x1_67_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_67_end_0 = const()[name = string("x1_67_end_0"), val = tensor([1, 8, 0, 64])]; + tensor x1_67_end_mask_0 = const()[name = string("x1_67_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_67_cast_fp16 = slice_by_index(begin = x1_67_begin_0, end = x1_67_end_0, end_mask = x1_67_end_mask_0, x = k_33_cast_fp16)[name = string("x1_67_cast_fp16")]; + tensor x2_67_begin_0 = const()[name = string("x2_67_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_67_end_0 = const()[name = string("x2_67_end_0"), val = tensor([1, 8, 0, 128])]; + tensor x2_67_end_mask_0 = const()[name = string("x2_67_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_67_cast_fp16 = slice_by_index(begin = x2_67_begin_0, end = x2_67_end_0, end_mask = x2_67_end_mask_0, x = k_33_cast_fp16)[name = string("x2_67_cast_fp16")]; + fp16 const_36_promoted_to_fp16 = const()[name = string("const_36_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_3108_cast_fp16 = mul(x = x2_67_cast_fp16, y = const_36_promoted_to_fp16)[name = string("op_3108_cast_fp16")]; + bool var_3110_interleave_0 = const()[name = string("op_3110_interleave_0"), val = bool(false)]; + tensor var_3110_cast_fp16 = concat(axis = var_72, interleave = var_3110_interleave_0, values = (var_3108_cast_fp16, x1_67_cast_fp16))[name = string("op_3110_cast_fp16")]; + tensor var_3111_cast_fp16 = mul(x = var_3110_cast_fp16, y = sin_7_cast_fp16)[name = string("op_3111_cast_fp16")]; + tensor k_state_33_cast_fp16 = add(x = var_3097_cast_fp16, y = var_3111_cast_fp16)[name = string("k_state_33_cast_fp16")]; + tensor expand_dims_192 = const()[name = string("expand_dims_192"), val = tensor([0])]; + tensor expand_dims_193 = const()[name = string("expand_dims_193"), val = tensor([0])]; + tensor expand_dims_195 = const()[name = string("expand_dims_195"), val = tensor([0])]; + tensor concat_309_values0_0 = const()[name = string("concat_309_values0_0"), val = tensor([16])]; + int32 concat_309_axis_0 = const()[name = string("concat_309_axis_0"), val = int32(0)]; + bool concat_309_interleave_0 = const()[name = string("concat_309_interleave_0"), val = bool(false)]; + tensor concat_309 = concat(axis = concat_309_axis_0, interleave = concat_309_interleave_0, values = (concat_309_values0_0, expand_dims_192, expand_dims_193, expand_dims_2, expand_dims_195))[name = string("concat_309")]; + tensor key_cache_internal_tensor_assign_17_stride_0 = const()[name = string("key_cache_internal_tensor_assign_17_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor key_cache_internal_tensor_assign_17_begin_mask_0 = const()[name = string("key_cache_internal_tensor_assign_17_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_17_end_mask_0 = const()[name = string("key_cache_internal_tensor_assign_17_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor key_cache_internal_tensor_assign_17_squeeze_mask_0 = const()[name = string("key_cache_internal_tensor_assign_17_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_17_cast_fp16 = slice_update(begin = concat_309, begin_mask = key_cache_internal_tensor_assign_17_begin_mask_0, end = concat_6, end_mask = key_cache_internal_tensor_assign_17_end_mask_0, squeeze_mask = key_cache_internal_tensor_assign_17_squeeze_mask_0, stride = key_cache_internal_tensor_assign_17_stride_0, update = k_state_33_cast_fp16, x = coreml_update_state_86)[name = string("key_cache_internal_tensor_assign_17_cast_fp16")]; + write_state(data = key_cache_internal_tensor_assign_17_cast_fp16, input = key_cache)[name = string("coreml_update_state_88_write_state")]; + tensor coreml_update_state_88 = read_state(input = key_cache)[name = string("coreml_update_state_88")]; + tensor value_cache_internal_tensor_assign_17_stride_0 = const()[name = string("value_cache_internal_tensor_assign_17_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor value_cache_internal_tensor_assign_17_begin_mask_0 = const()[name = string("value_cache_internal_tensor_assign_17_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor value_cache_internal_tensor_assign_17_end_mask_0 = const()[name = string("value_cache_internal_tensor_assign_17_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor value_cache_internal_tensor_assign_17_squeeze_mask_0 = const()[name = string("value_cache_internal_tensor_assign_17_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor v_state_33_cast_fp16 = transpose(perm = v_state_33_perm_0, x = var_3077_cast_fp16)[name = string("transpose_45")]; + tensor value_cache_internal_tensor_assign_17_cast_fp16 = slice_update(begin = concat_309, begin_mask = value_cache_internal_tensor_assign_17_begin_mask_0, end = concat_6, end_mask = value_cache_internal_tensor_assign_17_end_mask_0, squeeze_mask = value_cache_internal_tensor_assign_17_squeeze_mask_0, stride = value_cache_internal_tensor_assign_17_stride_0, update = v_state_33_cast_fp16, x = coreml_update_state_87)[name = string("value_cache_internal_tensor_assign_17_cast_fp16")]; + write_state(data = value_cache_internal_tensor_assign_17_cast_fp16, input = value_cache)[name = string("coreml_update_state_89_write_state")]; + tensor coreml_update_state_89 = read_state(input = value_cache)[name = string("coreml_update_state_89")]; + tensor var_3134_begin_0 = const()[name = string("op_3134_begin_0"), val = tensor([16, 0, 0, 0, 0])]; + tensor var_3134_end_0 = const()[name = string("op_3134_end_0"), val = tensor([17, 1, 8, 2048, 128])]; + tensor var_3134_end_mask_0 = const()[name = string("op_3134_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_3134_squeeze_mask_0 = const()[name = string("op_3134_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_3134_cast_fp16 = slice_by_index(begin = var_3134_begin_0, end = var_3134_end_0, end_mask = var_3134_end_mask_0, squeeze_mask = var_3134_squeeze_mask_0, x = coreml_update_state_88)[name = string("op_3134_cast_fp16")]; + tensor var_3137_begin_0 = const()[name = string("op_3137_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_3137_end_mask_0 = const()[name = string("op_3137_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_3137_cast_fp16 = slice_by_index(begin = var_3137_begin_0, end = concat_11, end_mask = var_3137_end_mask_0, x = var_3134_cast_fp16)[name = string("op_3137_cast_fp16")]; + tensor var_3139_begin_0 = const()[name = string("op_3139_begin_0"), val = tensor([16, 0, 0, 0, 0])]; + tensor var_3139_end_0 = const()[name = string("op_3139_end_0"), val = tensor([17, 1, 8, 2048, 128])]; + tensor var_3139_end_mask_0 = const()[name = string("op_3139_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_3139_squeeze_mask_0 = const()[name = string("op_3139_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_3139_cast_fp16 = slice_by_index(begin = var_3139_begin_0, end = var_3139_end_0, end_mask = var_3139_end_mask_0, squeeze_mask = var_3139_squeeze_mask_0, x = coreml_update_state_89)[name = string("op_3139_cast_fp16")]; + tensor var_3142_begin_0 = const()[name = string("op_3142_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_3142_end_mask_0 = const()[name = string("op_3142_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_3142_cast_fp16 = slice_by_index(begin = var_3142_begin_0, end = concat_11, end_mask = var_3142_end_mask_0, x = var_3139_cast_fp16)[name = string("op_3142_cast_fp16")]; + tensor var_3144_shape_cast_fp16 = shape(x = var_3137_cast_fp16)[name = string("op_3144_shape_cast_fp16")]; + int32 gather_301 = const()[name = string("gather_301"), val = int32(1)]; + int32 gather_302 = const()[name = string("gather_302"), val = int32(8)]; + int32 gather_303_axis_0 = const()[name = string("gather_303_axis_0"), val = int32(0)]; + int32 gather_303_batch_dims_0 = const()[name = string("gather_303_batch_dims_0"), val = int32(0)]; + bool gather_303_validate_indices_0 = const()[name = string("gather_303_validate_indices_0"), val = bool(false)]; + string var_3144_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_3144_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_303_to_uint16 = const()[name = string("select_303_to_uint16"), val = uint16(2)]; + tensor var_3144_shape_cast_fp16_to_uint16 = cast(dtype = var_3144_shape_cast_fp16_to_uint16_dtype_0, x = var_3144_shape_cast_fp16)[name = string("cast_94")]; + uint16 gather_303_cast_uint16 = gather(axis = gather_303_axis_0, batch_dims = gather_303_batch_dims_0, indices = select_303_to_uint16, validate_indices = gather_303_validate_indices_0, x = var_3144_shape_cast_fp16_to_uint16)[name = string("gather_303_cast_uint16")]; + string gather_303_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_303_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_304 = const()[name = string("gather_304"), val = int32(128)]; + tensor var_3151_axes_0 = const()[name = string("op_3151_axes_0"), val = tensor([2])]; + tensor var_3151_cast_fp16 = expand_dims(axes = var_3151_axes_0, x = var_3137_cast_fp16)[name = string("op_3151_cast_fp16")]; + tensor shape_337_cast_fp16 = shape(x = var_3151_cast_fp16)[name = string("shape_337_cast_fp16")]; + int32 concat_317_axis_0 = const()[name = string("concat_317_axis_0"), val = int32(0)]; + bool concat_317_interleave_0 = const()[name = string("concat_317_interleave_0"), val = bool(false)]; + int32 gather_303_cast_uint16_to_int32 = cast(dtype = gather_303_cast_uint16_to_int32_dtype_0, x = gather_303_cast_uint16)[name = string("cast_93")]; + tensor concat_317 = concat(axis = concat_317_axis_0, interleave = concat_317_interleave_0, values = (gather_301, gather_302, var_81, gather_303_cast_uint16_to_int32, gather_304))[name = string("concat_317")]; + tensor real_div_32 = real_div(x = concat_317, y = shape_337_cast_fp16)[name = string("real_div_32")]; + tensor hidden_states_491_cast_fp16 = tile(reps = real_div_32, x = var_3151_cast_fp16)[name = string("hidden_states_491_cast_fp16")]; + tensor concat_318x = const()[name = string("concat_318x"), val = tensor([1, 24, -1, 128])]; + tensor key_states_67_cast_fp16 = reshape(shape = concat_318x, x = hidden_states_491_cast_fp16)[name = string("key_states_67_cast_fp16")]; + tensor var_3161_shape_cast_fp16 = shape(x = var_3142_cast_fp16)[name = string("op_3161_shape_cast_fp16")]; + int32 gather_305 = const()[name = string("gather_305"), val = int32(1)]; + int32 gather_306 = const()[name = string("gather_306"), val = int32(8)]; + int32 gather_307_axis_0 = const()[name = string("gather_307_axis_0"), val = int32(0)]; + int32 gather_307_batch_dims_0 = const()[name = string("gather_307_batch_dims_0"), val = int32(0)]; + bool gather_307_validate_indices_0 = const()[name = string("gather_307_validate_indices_0"), val = bool(false)]; + string var_3161_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_3161_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_307_to_uint16 = const()[name = string("select_307_to_uint16"), val = uint16(2)]; + tensor var_3161_shape_cast_fp16_to_uint16 = cast(dtype = var_3161_shape_cast_fp16_to_uint16_dtype_0, x = var_3161_shape_cast_fp16)[name = string("cast_92")]; + uint16 gather_307_cast_uint16 = gather(axis = gather_307_axis_0, batch_dims = gather_307_batch_dims_0, indices = select_307_to_uint16, validate_indices = gather_307_validate_indices_0, x = var_3161_shape_cast_fp16_to_uint16)[name = string("gather_307_cast_uint16")]; + string gather_307_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_307_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_308 = const()[name = string("gather_308"), val = int32(128)]; + tensor var_3168_axes_0 = const()[name = string("op_3168_axes_0"), val = tensor([2])]; + tensor var_3168_cast_fp16 = expand_dims(axes = var_3168_axes_0, x = var_3142_cast_fp16)[name = string("op_3168_cast_fp16")]; + tensor shape_342_cast_fp16 = shape(x = var_3168_cast_fp16)[name = string("shape_342_cast_fp16")]; + int32 concat_319_axis_0 = const()[name = string("concat_319_axis_0"), val = int32(0)]; + bool concat_319_interleave_0 = const()[name = string("concat_319_interleave_0"), val = bool(false)]; + int32 gather_307_cast_uint16_to_int32 = cast(dtype = gather_307_cast_uint16_to_int32_dtype_0, x = gather_307_cast_uint16)[name = string("cast_91")]; + tensor concat_319 = concat(axis = concat_319_axis_0, interleave = concat_319_interleave_0, values = (gather_305, gather_306, var_81, gather_307_cast_uint16_to_int32, gather_308))[name = string("concat_319")]; + tensor real_div_33 = real_div(x = concat_319, y = shape_342_cast_fp16)[name = string("real_div_33")]; + tensor hidden_states_495_cast_fp16 = tile(reps = real_div_33, x = var_3168_cast_fp16)[name = string("hidden_states_495_cast_fp16")]; + tensor concat_320x = const()[name = string("concat_320x"), val = tensor([1, 24, -1, 128])]; + tensor value_states_67_cast_fp16 = reshape(shape = concat_320x, x = hidden_states_495_cast_fp16)[name = string("value_states_67_cast_fp16")]; + tensor var_3178_shape_cast_fp16 = shape(x = key_states_67_cast_fp16)[name = string("op_3178_shape_cast_fp16")]; + int32 gather_309_axis_0 = const()[name = string("gather_309_axis_0"), val = int32(0)]; + int32 gather_309_batch_dims_0 = const()[name = string("gather_309_batch_dims_0"), val = int32(0)]; + bool gather_309_validate_indices_0 = const()[name = string("gather_309_validate_indices_0"), val = bool(false)]; + string var_3178_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_3178_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_309_to_uint16 = const()[name = string("select_309_to_uint16"), val = uint16(2)]; + tensor var_3178_shape_cast_fp16_to_uint16 = cast(dtype = var_3178_shape_cast_fp16_to_uint16_dtype_0, x = var_3178_shape_cast_fp16)[name = string("cast_90")]; + uint16 gather_309_cast_uint16 = gather(axis = gather_309_axis_0, batch_dims = gather_309_batch_dims_0, indices = select_309_to_uint16, validate_indices = gather_309_validate_indices_0, x = var_3178_shape_cast_fp16_to_uint16)[name = string("gather_309_cast_uint16")]; + string gather_309_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_309_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 concat_321_values0_0 = const()[name = string("concat_321_values0_0"), val = int32(1)]; + int32 concat_321_values1_0 = const()[name = string("concat_321_values1_0"), val = int32(1)]; + int32 concat_321_values2_0 = const()[name = string("concat_321_values2_0"), val = int32(0)]; + int32 concat_321_axis_0 = const()[name = string("concat_321_axis_0"), val = int32(0)]; + bool concat_321_interleave_0 = const()[name = string("concat_321_interleave_0"), val = bool(false)]; + int32 gather_309_cast_uint16_to_int32 = cast(dtype = gather_309_cast_uint16_to_int32_dtype_0, x = gather_309_cast_uint16)[name = string("cast_89")]; + tensor concat_321 = concat(axis = concat_321_axis_0, interleave = concat_321_interleave_0, values = (concat_321_values0_0, concat_321_values1_0, concat_321_values2_0, gather_309_cast_uint16_to_int32))[name = string("concat_321")]; + tensor causal_mask_35_begin_0 = const()[name = string("causal_mask_35_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor causal_mask_35_end_mask_0 = const()[name = string("causal_mask_35_end_mask_0"), val = tensor([true, true, true, false])]; + tensor causal_mask_35_cast_fp16 = slice_by_index(begin = causal_mask_35_begin_0, end = concat_321, end_mask = causal_mask_35_end_mask_0, x = causal_mask)[name = string("causal_mask_35_cast_fp16")]; + tensor attn_output_65_cast_fp16 = scaled_dot_product_attention(attn_mask = causal_mask_35_cast_fp16, key = key_states_67_cast_fp16, query = query_states_67_cast_fp16, value = value_states_67_cast_fp16)[name = string("attn_output_65_cast_fp16")]; + tensor var_3184_perm_0 = const()[name = string("op_3184_perm_0"), val = tensor([0, 2, 1, 3])]; + int32 concat_322_axis_0 = const()[name = string("concat_322_axis_0"), val = int32(0)]; + bool concat_322_interleave_0 = const()[name = string("concat_322_interleave_0"), val = bool(false)]; + int32 gather_293_cast_uint16_to_int32 = cast(dtype = gather_293_cast_uint16_to_int32_dtype_0, x = gather_293_cast_uint16)[name = string("cast_88")]; + tensor concat_322 = concat(axis = concat_322_axis_0, interleave = concat_322_interleave_0, values = (gather_292, gather_293_cast_uint16_to_int32, var_72))[name = string("concat_322")]; + tensor var_3184_cast_fp16 = transpose(perm = var_3184_perm_0, x = attn_output_65_cast_fp16)[name = string("transpose_44")]; + tensor input_129_cast_fp16 = reshape(shape = concat_322, x = var_3184_cast_fp16)[name = string("input_129_cast_fp16")]; + tensor model_model_layers_16_self_attn_o_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1136688128))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1141406784))))[name = string("model_model_layers_16_self_attn_o_proj_weight_to_fp16_quantized")]; + tensor linear_115_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_16_self_attn_o_proj_weight_to_fp16_quantized, x = input_129_cast_fp16)[name = string("linear_115_cast_fp16")]; + tensor hidden_states_499_cast_fp16 = add(x = hidden_states_479_cast_fp16, y = linear_115_cast_fp16)[name = string("hidden_states_499_cast_fp16")]; + fp16 var_78_promoted_33_to_fp16 = const()[name = string("op_78_promoted_33_to_fp16"), val = fp16(0x1p+1)]; + tensor var_3193_cast_fp16 = pow(x = hidden_states_499_cast_fp16, y = var_78_promoted_33_to_fp16)[name = string("op_3193_cast_fp16")]; + tensor variance_67_axes_0 = const()[name = string("variance_67_axes_0"), val = tensor([-1])]; + bool variance_67_keep_dims_0 = const()[name = string("variance_67_keep_dims_0"), val = bool(true)]; + tensor variance_67_cast_fp16 = reduce_mean(axes = variance_67_axes_0, keep_dims = variance_67_keep_dims_0, x = var_3193_cast_fp16)[name = string("variance_67_cast_fp16")]; + fp16 var_3196_to_fp16 = const()[name = string("op_3196_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_3197_cast_fp16 = add(x = variance_67_cast_fp16, y = var_3196_to_fp16)[name = string("op_3197_cast_fp16")]; + fp32 var_3198_epsilon_0 = const()[name = string("op_3198_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_3198_cast_fp16 = rsqrt(epsilon = var_3198_epsilon_0, x = var_3197_cast_fp16)[name = string("op_3198_cast_fp16")]; + tensor hidden_states_503_cast_fp16 = mul(x = hidden_states_499_cast_fp16, y = var_3198_cast_fp16)[name = string("hidden_states_503_cast_fp16")]; + tensor model_model_layers_16_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_16_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1141996672)))]; + tensor input_131_cast_fp16 = mul(x = model_model_layers_16_post_attention_layernorm_weight_to_fp16, y = hidden_states_503_cast_fp16)[name = string("input_131_cast_fp16")]; + tensor model_model_layers_16_mlp_gate_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1142002880))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1154585856))))[name = string("model_model_layers_16_mlp_gate_proj_weight_to_fp16_quantized")]; + tensor linear_116_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_16_mlp_gate_proj_weight_to_fp16_quantized, x = input_131_cast_fp16)[name = string("linear_116_cast_fp16")]; + tensor var_3210_cast_fp16 = silu(x = linear_116_cast_fp16)[name = string("op_3210_cast_fp16")]; + tensor model_model_layers_16_mlp_up_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1156158784))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1168741760))))[name = string("model_model_layers_16_mlp_up_proj_weight_to_fp16_quantized")]; + tensor linear_117_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_16_mlp_up_proj_weight_to_fp16_quantized, x = input_131_cast_fp16)[name = string("linear_117_cast_fp16")]; + tensor input_135_cast_fp16 = mul(x = var_3210_cast_fp16, y = linear_117_cast_fp16)[name = string("input_135_cast_fp16")]; + tensor model_model_layers_16_mlp_down_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1170314688))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1182897664))))[name = string("model_model_layers_16_mlp_down_proj_weight_to_fp16_quantized")]; + tensor linear_118_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_16_mlp_down_proj_weight_to_fp16_quantized, x = input_135_cast_fp16)[name = string("linear_118_cast_fp16")]; + tensor hidden_states_509_cast_fp16 = add(x = hidden_states_499_cast_fp16, y = linear_118_cast_fp16)[name = string("hidden_states_509_cast_fp16")]; + fp16 var_78_promoted_34_to_fp16 = const()[name = string("op_78_promoted_34_to_fp16"), val = fp16(0x1p+1)]; + tensor var_3223_cast_fp16 = pow(x = hidden_states_509_cast_fp16, y = var_78_promoted_34_to_fp16)[name = string("op_3223_cast_fp16")]; + tensor variance_69_axes_0 = const()[name = string("variance_69_axes_0"), val = tensor([-1])]; + bool variance_69_keep_dims_0 = const()[name = string("variance_69_keep_dims_0"), val = bool(true)]; + tensor variance_69_cast_fp16 = reduce_mean(axes = variance_69_axes_0, keep_dims = variance_69_keep_dims_0, x = var_3223_cast_fp16)[name = string("variance_69_cast_fp16")]; + fp16 var_3226_to_fp16 = const()[name = string("op_3226_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_3227_cast_fp16 = add(x = variance_69_cast_fp16, y = var_3226_to_fp16)[name = string("op_3227_cast_fp16")]; + fp32 var_3228_epsilon_0 = const()[name = string("op_3228_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_3228_cast_fp16 = rsqrt(epsilon = var_3228_epsilon_0, x = var_3227_cast_fp16)[name = string("op_3228_cast_fp16")]; + tensor hidden_states_513_cast_fp16 = mul(x = hidden_states_509_cast_fp16, y = var_3228_cast_fp16)[name = string("hidden_states_513_cast_fp16")]; + tensor model_model_layers_17_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_17_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1184470592)))]; + tensor hidden_states_517_cast_fp16 = mul(x = model_model_layers_17_input_layernorm_weight_to_fp16, y = hidden_states_513_cast_fp16)[name = string("hidden_states_517_cast_fp16")]; + tensor var_3239_shape_cast_fp16 = shape(x = hidden_states_517_cast_fp16)[name = string("op_3239_shape_cast_fp16")]; + int32 gather_310 = const()[name = string("gather_310"), val = int32(1)]; + int32 gather_311_axis_0 = const()[name = string("gather_311_axis_0"), val = int32(0)]; + int32 gather_311_batch_dims_0 = const()[name = string("gather_311_batch_dims_0"), val = int32(0)]; + bool gather_311_validate_indices_0 = const()[name = string("gather_311_validate_indices_0"), val = bool(false)]; + string var_3239_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_3239_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_311_to_uint16 = const()[name = string("select_311_to_uint16"), val = uint16(1)]; + tensor var_3239_shape_cast_fp16_to_uint16 = cast(dtype = var_3239_shape_cast_fp16_to_uint16_dtype_0, x = var_3239_shape_cast_fp16)[name = string("cast_87")]; + uint16 gather_311_cast_uint16 = gather(axis = gather_311_axis_0, batch_dims = gather_311_batch_dims_0, indices = select_311_to_uint16, validate_indices = gather_311_validate_indices_0, x = var_3239_shape_cast_fp16_to_uint16)[name = string("gather_311_cast_uint16")]; + string gather_311_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_311_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor model_model_layers_17_self_attn_q_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1184476800))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1189195456))))[name = string("model_model_layers_17_self_attn_q_proj_weight_to_fp16_quantized")]; + tensor linear_119_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_17_self_attn_q_proj_weight_to_fp16_quantized, x = hidden_states_517_cast_fp16)[name = string("linear_119_cast_fp16")]; + tensor model_model_layers_17_self_attn_k_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1189785344))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1191358272))))[name = string("model_model_layers_17_self_attn_k_proj_weight_to_fp16_quantized")]; + tensor linear_120_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_17_self_attn_k_proj_weight_to_fp16_quantized, x = hidden_states_517_cast_fp16)[name = string("linear_120_cast_fp16")]; + tensor model_model_layers_17_self_attn_v_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1191554944))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1193127872))))[name = string("model_model_layers_17_self_attn_v_proj_weight_to_fp16_quantized")]; + tensor linear_121_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_17_self_attn_v_proj_weight_to_fp16_quantized, x = hidden_states_517_cast_fp16)[name = string("linear_121_cast_fp16")]; + tensor concat_323x = const()[name = string("concat_323x"), val = tensor([1, -1, 24, 128])]; + tensor var_3248_cast_fp16 = reshape(shape = concat_323x, x = linear_119_cast_fp16)[name = string("op_3248_cast_fp16")]; + tensor q_35_perm_0 = const()[name = string("q_35_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_324x = const()[name = string("concat_324x"), val = tensor([1, -1, 8, 128])]; + tensor var_3251_cast_fp16 = reshape(shape = concat_324x, x = linear_120_cast_fp16)[name = string("op_3251_cast_fp16")]; + tensor k_35_perm_0 = const()[name = string("k_35_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_325x = const()[name = string("concat_325x"), val = tensor([1, -1, 8, 128])]; + tensor var_3254_cast_fp16 = reshape(shape = concat_325x, x = linear_121_cast_fp16)[name = string("op_3254_cast_fp16")]; + tensor v_state_35_perm_0 = const()[name = string("v_state_35_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor q_35_cast_fp16 = transpose(perm = q_35_perm_0, x = var_3248_cast_fp16)[name = string("transpose_43")]; + tensor var_3258_cast_fp16 = mul(x = q_35_cast_fp16, y = cos_7_cast_fp16)[name = string("op_3258_cast_fp16")]; + tensor x1_69_begin_0 = const()[name = string("x1_69_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_69_end_0 = const()[name = string("x1_69_end_0"), val = tensor([1, 24, 0, 64])]; + tensor x1_69_end_mask_0 = const()[name = string("x1_69_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_69_cast_fp16 = slice_by_index(begin = x1_69_begin_0, end = x1_69_end_0, end_mask = x1_69_end_mask_0, x = q_35_cast_fp16)[name = string("x1_69_cast_fp16")]; + tensor x2_69_begin_0 = const()[name = string("x2_69_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_69_end_0 = const()[name = string("x2_69_end_0"), val = tensor([1, 24, 0, 128])]; + tensor x2_69_end_mask_0 = const()[name = string("x2_69_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_69_cast_fp16 = slice_by_index(begin = x2_69_begin_0, end = x2_69_end_0, end_mask = x2_69_end_mask_0, x = q_35_cast_fp16)[name = string("x2_69_cast_fp16")]; + fp16 const_37_promoted_to_fp16 = const()[name = string("const_37_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_3269_cast_fp16 = mul(x = x2_69_cast_fp16, y = const_37_promoted_to_fp16)[name = string("op_3269_cast_fp16")]; + bool var_3271_interleave_0 = const()[name = string("op_3271_interleave_0"), val = bool(false)]; + tensor var_3271_cast_fp16 = concat(axis = var_72, interleave = var_3271_interleave_0, values = (var_3269_cast_fp16, x1_69_cast_fp16))[name = string("op_3271_cast_fp16")]; + tensor var_3272_cast_fp16 = mul(x = var_3271_cast_fp16, y = sin_7_cast_fp16)[name = string("op_3272_cast_fp16")]; + tensor query_states_71_cast_fp16 = add(x = var_3258_cast_fp16, y = var_3272_cast_fp16)[name = string("query_states_71_cast_fp16")]; + tensor k_35_cast_fp16 = transpose(perm = k_35_perm_0, x = var_3251_cast_fp16)[name = string("transpose_42")]; + tensor var_3274_cast_fp16 = mul(x = k_35_cast_fp16, y = cos_7_cast_fp16)[name = string("op_3274_cast_fp16")]; + tensor x1_71_begin_0 = const()[name = string("x1_71_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_71_end_0 = const()[name = string("x1_71_end_0"), val = tensor([1, 8, 0, 64])]; + tensor x1_71_end_mask_0 = const()[name = string("x1_71_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_71_cast_fp16 = slice_by_index(begin = x1_71_begin_0, end = x1_71_end_0, end_mask = x1_71_end_mask_0, x = k_35_cast_fp16)[name = string("x1_71_cast_fp16")]; + tensor x2_71_begin_0 = const()[name = string("x2_71_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_71_end_0 = const()[name = string("x2_71_end_0"), val = tensor([1, 8, 0, 128])]; + tensor x2_71_end_mask_0 = const()[name = string("x2_71_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_71_cast_fp16 = slice_by_index(begin = x2_71_begin_0, end = x2_71_end_0, end_mask = x2_71_end_mask_0, x = k_35_cast_fp16)[name = string("x2_71_cast_fp16")]; + fp16 const_38_promoted_to_fp16 = const()[name = string("const_38_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_3285_cast_fp16 = mul(x = x2_71_cast_fp16, y = const_38_promoted_to_fp16)[name = string("op_3285_cast_fp16")]; + bool var_3287_interleave_0 = const()[name = string("op_3287_interleave_0"), val = bool(false)]; + tensor var_3287_cast_fp16 = concat(axis = var_72, interleave = var_3287_interleave_0, values = (var_3285_cast_fp16, x1_71_cast_fp16))[name = string("op_3287_cast_fp16")]; + tensor var_3288_cast_fp16 = mul(x = var_3287_cast_fp16, y = sin_7_cast_fp16)[name = string("op_3288_cast_fp16")]; + tensor k_state_35_cast_fp16 = add(x = var_3274_cast_fp16, y = var_3288_cast_fp16)[name = string("k_state_35_cast_fp16")]; + tensor expand_dims_204 = const()[name = string("expand_dims_204"), val = tensor([0])]; + tensor expand_dims_205 = const()[name = string("expand_dims_205"), val = tensor([0])]; + tensor expand_dims_207 = const()[name = string("expand_dims_207"), val = tensor([0])]; + tensor concat_328_values0_0 = const()[name = string("concat_328_values0_0"), val = tensor([17])]; + int32 concat_328_axis_0 = const()[name = string("concat_328_axis_0"), val = int32(0)]; + bool concat_328_interleave_0 = const()[name = string("concat_328_interleave_0"), val = bool(false)]; + tensor concat_328 = concat(axis = concat_328_axis_0, interleave = concat_328_interleave_0, values = (concat_328_values0_0, expand_dims_204, expand_dims_205, expand_dims_2, expand_dims_207))[name = string("concat_328")]; + tensor key_cache_internal_tensor_assign_18_stride_0 = const()[name = string("key_cache_internal_tensor_assign_18_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor key_cache_internal_tensor_assign_18_begin_mask_0 = const()[name = string("key_cache_internal_tensor_assign_18_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_18_end_mask_0 = const()[name = string("key_cache_internal_tensor_assign_18_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor key_cache_internal_tensor_assign_18_squeeze_mask_0 = const()[name = string("key_cache_internal_tensor_assign_18_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_18_cast_fp16 = slice_update(begin = concat_328, begin_mask = key_cache_internal_tensor_assign_18_begin_mask_0, end = concat_6, end_mask = key_cache_internal_tensor_assign_18_end_mask_0, squeeze_mask = key_cache_internal_tensor_assign_18_squeeze_mask_0, stride = key_cache_internal_tensor_assign_18_stride_0, update = k_state_35_cast_fp16, x = coreml_update_state_88)[name = string("key_cache_internal_tensor_assign_18_cast_fp16")]; + write_state(data = key_cache_internal_tensor_assign_18_cast_fp16, input = key_cache)[name = string("coreml_update_state_90_write_state")]; + tensor coreml_update_state_90 = read_state(input = key_cache)[name = string("coreml_update_state_90")]; + tensor value_cache_internal_tensor_assign_18_stride_0 = const()[name = string("value_cache_internal_tensor_assign_18_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor value_cache_internal_tensor_assign_18_begin_mask_0 = const()[name = string("value_cache_internal_tensor_assign_18_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor value_cache_internal_tensor_assign_18_end_mask_0 = const()[name = string("value_cache_internal_tensor_assign_18_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor value_cache_internal_tensor_assign_18_squeeze_mask_0 = const()[name = string("value_cache_internal_tensor_assign_18_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor v_state_35_cast_fp16 = transpose(perm = v_state_35_perm_0, x = var_3254_cast_fp16)[name = string("transpose_41")]; + tensor value_cache_internal_tensor_assign_18_cast_fp16 = slice_update(begin = concat_328, begin_mask = value_cache_internal_tensor_assign_18_begin_mask_0, end = concat_6, end_mask = value_cache_internal_tensor_assign_18_end_mask_0, squeeze_mask = value_cache_internal_tensor_assign_18_squeeze_mask_0, stride = value_cache_internal_tensor_assign_18_stride_0, update = v_state_35_cast_fp16, x = coreml_update_state_89)[name = string("value_cache_internal_tensor_assign_18_cast_fp16")]; + write_state(data = value_cache_internal_tensor_assign_18_cast_fp16, input = value_cache)[name = string("coreml_update_state_91_write_state")]; + tensor coreml_update_state_91 = read_state(input = value_cache)[name = string("coreml_update_state_91")]; + tensor var_3311_begin_0 = const()[name = string("op_3311_begin_0"), val = tensor([17, 0, 0, 0, 0])]; + tensor var_3311_end_0 = const()[name = string("op_3311_end_0"), val = tensor([18, 1, 8, 2048, 128])]; + tensor var_3311_end_mask_0 = const()[name = string("op_3311_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_3311_squeeze_mask_0 = const()[name = string("op_3311_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_3311_cast_fp16 = slice_by_index(begin = var_3311_begin_0, end = var_3311_end_0, end_mask = var_3311_end_mask_0, squeeze_mask = var_3311_squeeze_mask_0, x = coreml_update_state_90)[name = string("op_3311_cast_fp16")]; + tensor var_3314_begin_0 = const()[name = string("op_3314_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_3314_end_mask_0 = const()[name = string("op_3314_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_3314_cast_fp16 = slice_by_index(begin = var_3314_begin_0, end = concat_11, end_mask = var_3314_end_mask_0, x = var_3311_cast_fp16)[name = string("op_3314_cast_fp16")]; + tensor var_3316_begin_0 = const()[name = string("op_3316_begin_0"), val = tensor([17, 0, 0, 0, 0])]; + tensor var_3316_end_0 = const()[name = string("op_3316_end_0"), val = tensor([18, 1, 8, 2048, 128])]; + tensor var_3316_end_mask_0 = const()[name = string("op_3316_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_3316_squeeze_mask_0 = const()[name = string("op_3316_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_3316_cast_fp16 = slice_by_index(begin = var_3316_begin_0, end = var_3316_end_0, end_mask = var_3316_end_mask_0, squeeze_mask = var_3316_squeeze_mask_0, x = coreml_update_state_91)[name = string("op_3316_cast_fp16")]; + tensor var_3319_begin_0 = const()[name = string("op_3319_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_3319_end_mask_0 = const()[name = string("op_3319_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_3319_cast_fp16 = slice_by_index(begin = var_3319_begin_0, end = concat_11, end_mask = var_3319_end_mask_0, x = var_3316_cast_fp16)[name = string("op_3319_cast_fp16")]; + tensor var_3321_shape_cast_fp16 = shape(x = var_3314_cast_fp16)[name = string("op_3321_shape_cast_fp16")]; + int32 gather_319 = const()[name = string("gather_319"), val = int32(1)]; + int32 gather_320 = const()[name = string("gather_320"), val = int32(8)]; + int32 gather_321_axis_0 = const()[name = string("gather_321_axis_0"), val = int32(0)]; + int32 gather_321_batch_dims_0 = const()[name = string("gather_321_batch_dims_0"), val = int32(0)]; + bool gather_321_validate_indices_0 = const()[name = string("gather_321_validate_indices_0"), val = bool(false)]; + string var_3321_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_3321_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_321_to_uint16 = const()[name = string("select_321_to_uint16"), val = uint16(2)]; + tensor var_3321_shape_cast_fp16_to_uint16 = cast(dtype = var_3321_shape_cast_fp16_to_uint16_dtype_0, x = var_3321_shape_cast_fp16)[name = string("cast_86")]; + uint16 gather_321_cast_uint16 = gather(axis = gather_321_axis_0, batch_dims = gather_321_batch_dims_0, indices = select_321_to_uint16, validate_indices = gather_321_validate_indices_0, x = var_3321_shape_cast_fp16_to_uint16)[name = string("gather_321_cast_uint16")]; + string gather_321_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_321_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_322 = const()[name = string("gather_322"), val = int32(128)]; + tensor var_3328_axes_0 = const()[name = string("op_3328_axes_0"), val = tensor([2])]; + tensor var_3328_cast_fp16 = expand_dims(axes = var_3328_axes_0, x = var_3314_cast_fp16)[name = string("op_3328_cast_fp16")]; + tensor shape_357_cast_fp16 = shape(x = var_3328_cast_fp16)[name = string("shape_357_cast_fp16")]; + int32 concat_336_axis_0 = const()[name = string("concat_336_axis_0"), val = int32(0)]; + bool concat_336_interleave_0 = const()[name = string("concat_336_interleave_0"), val = bool(false)]; + int32 gather_321_cast_uint16_to_int32 = cast(dtype = gather_321_cast_uint16_to_int32_dtype_0, x = gather_321_cast_uint16)[name = string("cast_85")]; + tensor concat_336 = concat(axis = concat_336_axis_0, interleave = concat_336_interleave_0, values = (gather_319, gather_320, var_81, gather_321_cast_uint16_to_int32, gather_322))[name = string("concat_336")]; + tensor real_div_34 = real_div(x = concat_336, y = shape_357_cast_fp16)[name = string("real_div_34")]; + tensor hidden_states_521_cast_fp16 = tile(reps = real_div_34, x = var_3328_cast_fp16)[name = string("hidden_states_521_cast_fp16")]; + tensor concat_337x = const()[name = string("concat_337x"), val = tensor([1, 24, -1, 128])]; + tensor key_states_71_cast_fp16 = reshape(shape = concat_337x, x = hidden_states_521_cast_fp16)[name = string("key_states_71_cast_fp16")]; + tensor var_3338_shape_cast_fp16 = shape(x = var_3319_cast_fp16)[name = string("op_3338_shape_cast_fp16")]; + int32 gather_323 = const()[name = string("gather_323"), val = int32(1)]; + int32 gather_324 = const()[name = string("gather_324"), val = int32(8)]; + int32 gather_325_axis_0 = const()[name = string("gather_325_axis_0"), val = int32(0)]; + int32 gather_325_batch_dims_0 = const()[name = string("gather_325_batch_dims_0"), val = int32(0)]; + bool gather_325_validate_indices_0 = const()[name = string("gather_325_validate_indices_0"), val = bool(false)]; + string var_3338_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_3338_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_325_to_uint16 = const()[name = string("select_325_to_uint16"), val = uint16(2)]; + tensor var_3338_shape_cast_fp16_to_uint16 = cast(dtype = var_3338_shape_cast_fp16_to_uint16_dtype_0, x = var_3338_shape_cast_fp16)[name = string("cast_84")]; + uint16 gather_325_cast_uint16 = gather(axis = gather_325_axis_0, batch_dims = gather_325_batch_dims_0, indices = select_325_to_uint16, validate_indices = gather_325_validate_indices_0, x = var_3338_shape_cast_fp16_to_uint16)[name = string("gather_325_cast_uint16")]; + string gather_325_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_325_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_326 = const()[name = string("gather_326"), val = int32(128)]; + tensor var_3345_axes_0 = const()[name = string("op_3345_axes_0"), val = tensor([2])]; + tensor var_3345_cast_fp16 = expand_dims(axes = var_3345_axes_0, x = var_3319_cast_fp16)[name = string("op_3345_cast_fp16")]; + tensor shape_362_cast_fp16 = shape(x = var_3345_cast_fp16)[name = string("shape_362_cast_fp16")]; + int32 concat_338_axis_0 = const()[name = string("concat_338_axis_0"), val = int32(0)]; + bool concat_338_interleave_0 = const()[name = string("concat_338_interleave_0"), val = bool(false)]; + int32 gather_325_cast_uint16_to_int32 = cast(dtype = gather_325_cast_uint16_to_int32_dtype_0, x = gather_325_cast_uint16)[name = string("cast_83")]; + tensor concat_338 = concat(axis = concat_338_axis_0, interleave = concat_338_interleave_0, values = (gather_323, gather_324, var_81, gather_325_cast_uint16_to_int32, gather_326))[name = string("concat_338")]; + tensor real_div_35 = real_div(x = concat_338, y = shape_362_cast_fp16)[name = string("real_div_35")]; + tensor hidden_states_525_cast_fp16 = tile(reps = real_div_35, x = var_3345_cast_fp16)[name = string("hidden_states_525_cast_fp16")]; + tensor concat_339x = const()[name = string("concat_339x"), val = tensor([1, 24, -1, 128])]; + tensor value_states_71_cast_fp16 = reshape(shape = concat_339x, x = hidden_states_525_cast_fp16)[name = string("value_states_71_cast_fp16")]; + tensor var_3355_shape_cast_fp16 = shape(x = key_states_71_cast_fp16)[name = string("op_3355_shape_cast_fp16")]; + int32 gather_327_axis_0 = const()[name = string("gather_327_axis_0"), val = int32(0)]; + int32 gather_327_batch_dims_0 = const()[name = string("gather_327_batch_dims_0"), val = int32(0)]; + bool gather_327_validate_indices_0 = const()[name = string("gather_327_validate_indices_0"), val = bool(false)]; + string var_3355_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_3355_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_327_to_uint16 = const()[name = string("select_327_to_uint16"), val = uint16(2)]; + tensor var_3355_shape_cast_fp16_to_uint16 = cast(dtype = var_3355_shape_cast_fp16_to_uint16_dtype_0, x = var_3355_shape_cast_fp16)[name = string("cast_82")]; + uint16 gather_327_cast_uint16 = gather(axis = gather_327_axis_0, batch_dims = gather_327_batch_dims_0, indices = select_327_to_uint16, validate_indices = gather_327_validate_indices_0, x = var_3355_shape_cast_fp16_to_uint16)[name = string("gather_327_cast_uint16")]; + string gather_327_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_327_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 concat_340_values0_0 = const()[name = string("concat_340_values0_0"), val = int32(1)]; + int32 concat_340_values1_0 = const()[name = string("concat_340_values1_0"), val = int32(1)]; + int32 concat_340_values2_0 = const()[name = string("concat_340_values2_0"), val = int32(0)]; + int32 concat_340_axis_0 = const()[name = string("concat_340_axis_0"), val = int32(0)]; + bool concat_340_interleave_0 = const()[name = string("concat_340_interleave_0"), val = bool(false)]; + int32 gather_327_cast_uint16_to_int32 = cast(dtype = gather_327_cast_uint16_to_int32_dtype_0, x = gather_327_cast_uint16)[name = string("cast_81")]; + tensor concat_340 = concat(axis = concat_340_axis_0, interleave = concat_340_interleave_0, values = (concat_340_values0_0, concat_340_values1_0, concat_340_values2_0, gather_327_cast_uint16_to_int32))[name = string("concat_340")]; + tensor causal_mask_37_begin_0 = const()[name = string("causal_mask_37_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor causal_mask_37_end_mask_0 = const()[name = string("causal_mask_37_end_mask_0"), val = tensor([true, true, true, false])]; + tensor causal_mask_37_cast_fp16 = slice_by_index(begin = causal_mask_37_begin_0, end = concat_340, end_mask = causal_mask_37_end_mask_0, x = causal_mask)[name = string("causal_mask_37_cast_fp16")]; + tensor attn_output_69_cast_fp16 = scaled_dot_product_attention(attn_mask = causal_mask_37_cast_fp16, key = key_states_71_cast_fp16, query = query_states_71_cast_fp16, value = value_states_71_cast_fp16)[name = string("attn_output_69_cast_fp16")]; + tensor var_3361_perm_0 = const()[name = string("op_3361_perm_0"), val = tensor([0, 2, 1, 3])]; + int32 concat_341_axis_0 = const()[name = string("concat_341_axis_0"), val = int32(0)]; + bool concat_341_interleave_0 = const()[name = string("concat_341_interleave_0"), val = bool(false)]; + int32 gather_311_cast_uint16_to_int32 = cast(dtype = gather_311_cast_uint16_to_int32_dtype_0, x = gather_311_cast_uint16)[name = string("cast_80")]; + tensor concat_341 = concat(axis = concat_341_axis_0, interleave = concat_341_interleave_0, values = (gather_310, gather_311_cast_uint16_to_int32, var_72))[name = string("concat_341")]; + tensor var_3361_cast_fp16 = transpose(perm = var_3361_perm_0, x = attn_output_69_cast_fp16)[name = string("transpose_40")]; + tensor input_137_cast_fp16 = reshape(shape = concat_341, x = var_3361_cast_fp16)[name = string("input_137_cast_fp16")]; + tensor model_model_layers_17_self_attn_o_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1193324544))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1198043200))))[name = string("model_model_layers_17_self_attn_o_proj_weight_to_fp16_quantized")]; + tensor linear_122_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_17_self_attn_o_proj_weight_to_fp16_quantized, x = input_137_cast_fp16)[name = string("linear_122_cast_fp16")]; + tensor hidden_states_529_cast_fp16 = add(x = hidden_states_509_cast_fp16, y = linear_122_cast_fp16)[name = string("hidden_states_529_cast_fp16")]; + fp16 var_78_promoted_35_to_fp16 = const()[name = string("op_78_promoted_35_to_fp16"), val = fp16(0x1p+1)]; + tensor var_3370_cast_fp16 = pow(x = hidden_states_529_cast_fp16, y = var_78_promoted_35_to_fp16)[name = string("op_3370_cast_fp16")]; + tensor variance_71_axes_0 = const()[name = string("variance_71_axes_0"), val = tensor([-1])]; + bool variance_71_keep_dims_0 = const()[name = string("variance_71_keep_dims_0"), val = bool(true)]; + tensor variance_71_cast_fp16 = reduce_mean(axes = variance_71_axes_0, keep_dims = variance_71_keep_dims_0, x = var_3370_cast_fp16)[name = string("variance_71_cast_fp16")]; + fp16 var_3373_to_fp16 = const()[name = string("op_3373_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_3374_cast_fp16 = add(x = variance_71_cast_fp16, y = var_3373_to_fp16)[name = string("op_3374_cast_fp16")]; + fp32 var_3375_epsilon_0 = const()[name = string("op_3375_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_3375_cast_fp16 = rsqrt(epsilon = var_3375_epsilon_0, x = var_3374_cast_fp16)[name = string("op_3375_cast_fp16")]; + tensor hidden_states_533_cast_fp16 = mul(x = hidden_states_529_cast_fp16, y = var_3375_cast_fp16)[name = string("hidden_states_533_cast_fp16")]; + tensor model_model_layers_17_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_17_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1198633088)))]; + tensor input_139_cast_fp16 = mul(x = model_model_layers_17_post_attention_layernorm_weight_to_fp16, y = hidden_states_533_cast_fp16)[name = string("input_139_cast_fp16")]; + tensor model_model_layers_17_mlp_gate_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1198639296))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1211222272))))[name = string("model_model_layers_17_mlp_gate_proj_weight_to_fp16_quantized")]; + tensor linear_123_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_17_mlp_gate_proj_weight_to_fp16_quantized, x = input_139_cast_fp16)[name = string("linear_123_cast_fp16")]; + tensor var_3387_cast_fp16 = silu(x = linear_123_cast_fp16)[name = string("op_3387_cast_fp16")]; + tensor model_model_layers_17_mlp_up_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1212795200))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1225378176))))[name = string("model_model_layers_17_mlp_up_proj_weight_to_fp16_quantized")]; + tensor linear_124_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_17_mlp_up_proj_weight_to_fp16_quantized, x = input_139_cast_fp16)[name = string("linear_124_cast_fp16")]; + tensor input_143_cast_fp16 = mul(x = var_3387_cast_fp16, y = linear_124_cast_fp16)[name = string("input_143_cast_fp16")]; + tensor model_model_layers_17_mlp_down_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1226951104))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1239534080))))[name = string("model_model_layers_17_mlp_down_proj_weight_to_fp16_quantized")]; + tensor linear_125_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_17_mlp_down_proj_weight_to_fp16_quantized, x = input_143_cast_fp16)[name = string("linear_125_cast_fp16")]; + tensor hidden_states_539_cast_fp16 = add(x = hidden_states_529_cast_fp16, y = linear_125_cast_fp16)[name = string("hidden_states_539_cast_fp16")]; + fp16 var_78_promoted_36_to_fp16 = const()[name = string("op_78_promoted_36_to_fp16"), val = fp16(0x1p+1)]; + tensor var_3400_cast_fp16 = pow(x = hidden_states_539_cast_fp16, y = var_78_promoted_36_to_fp16)[name = string("op_3400_cast_fp16")]; + tensor variance_73_axes_0 = const()[name = string("variance_73_axes_0"), val = tensor([-1])]; + bool variance_73_keep_dims_0 = const()[name = string("variance_73_keep_dims_0"), val = bool(true)]; + tensor variance_73_cast_fp16 = reduce_mean(axes = variance_73_axes_0, keep_dims = variance_73_keep_dims_0, x = var_3400_cast_fp16)[name = string("variance_73_cast_fp16")]; + fp16 var_3403_to_fp16 = const()[name = string("op_3403_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_3404_cast_fp16 = add(x = variance_73_cast_fp16, y = var_3403_to_fp16)[name = string("op_3404_cast_fp16")]; + fp32 var_3405_epsilon_0 = const()[name = string("op_3405_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_3405_cast_fp16 = rsqrt(epsilon = var_3405_epsilon_0, x = var_3404_cast_fp16)[name = string("op_3405_cast_fp16")]; + tensor hidden_states_543_cast_fp16 = mul(x = hidden_states_539_cast_fp16, y = var_3405_cast_fp16)[name = string("hidden_states_543_cast_fp16")]; + tensor model_model_layers_18_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_18_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1241107008)))]; + tensor hidden_states_547_cast_fp16 = mul(x = model_model_layers_18_input_layernorm_weight_to_fp16, y = hidden_states_543_cast_fp16)[name = string("hidden_states_547_cast_fp16")]; + tensor var_3416_shape_cast_fp16 = shape(x = hidden_states_547_cast_fp16)[name = string("op_3416_shape_cast_fp16")]; + int32 gather_328 = const()[name = string("gather_328"), val = int32(1)]; + int32 gather_329_axis_0 = const()[name = string("gather_329_axis_0"), val = int32(0)]; + int32 gather_329_batch_dims_0 = const()[name = string("gather_329_batch_dims_0"), val = int32(0)]; + bool gather_329_validate_indices_0 = const()[name = string("gather_329_validate_indices_0"), val = bool(false)]; + string var_3416_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_3416_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_329_to_uint16 = const()[name = string("select_329_to_uint16"), val = uint16(1)]; + tensor var_3416_shape_cast_fp16_to_uint16 = cast(dtype = var_3416_shape_cast_fp16_to_uint16_dtype_0, x = var_3416_shape_cast_fp16)[name = string("cast_79")]; + uint16 gather_329_cast_uint16 = gather(axis = gather_329_axis_0, batch_dims = gather_329_batch_dims_0, indices = select_329_to_uint16, validate_indices = gather_329_validate_indices_0, x = var_3416_shape_cast_fp16_to_uint16)[name = string("gather_329_cast_uint16")]; + string gather_329_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_329_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor model_model_layers_18_self_attn_q_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1241113216))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1245831872))))[name = string("model_model_layers_18_self_attn_q_proj_weight_to_fp16_quantized")]; + tensor linear_126_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_18_self_attn_q_proj_weight_to_fp16_quantized, x = hidden_states_547_cast_fp16)[name = string("linear_126_cast_fp16")]; + tensor model_model_layers_18_self_attn_k_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1246421760))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1247994688))))[name = string("model_model_layers_18_self_attn_k_proj_weight_to_fp16_quantized")]; + tensor linear_127_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_18_self_attn_k_proj_weight_to_fp16_quantized, x = hidden_states_547_cast_fp16)[name = string("linear_127_cast_fp16")]; + tensor model_model_layers_18_self_attn_v_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1248191360))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1249764288))))[name = string("model_model_layers_18_self_attn_v_proj_weight_to_fp16_quantized")]; + tensor linear_128_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_18_self_attn_v_proj_weight_to_fp16_quantized, x = hidden_states_547_cast_fp16)[name = string("linear_128_cast_fp16")]; + tensor concat_342x = const()[name = string("concat_342x"), val = tensor([1, -1, 24, 128])]; + tensor var_3425_cast_fp16 = reshape(shape = concat_342x, x = linear_126_cast_fp16)[name = string("op_3425_cast_fp16")]; + tensor q_37_perm_0 = const()[name = string("q_37_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_343x = const()[name = string("concat_343x"), val = tensor([1, -1, 8, 128])]; + tensor var_3428_cast_fp16 = reshape(shape = concat_343x, x = linear_127_cast_fp16)[name = string("op_3428_cast_fp16")]; + tensor k_37_perm_0 = const()[name = string("k_37_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_344x = const()[name = string("concat_344x"), val = tensor([1, -1, 8, 128])]; + tensor var_3431_cast_fp16 = reshape(shape = concat_344x, x = linear_128_cast_fp16)[name = string("op_3431_cast_fp16")]; + tensor v_state_37_perm_0 = const()[name = string("v_state_37_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor q_37_cast_fp16 = transpose(perm = q_37_perm_0, x = var_3425_cast_fp16)[name = string("transpose_39")]; + tensor var_3435_cast_fp16 = mul(x = q_37_cast_fp16, y = cos_7_cast_fp16)[name = string("op_3435_cast_fp16")]; + tensor x1_73_begin_0 = const()[name = string("x1_73_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_73_end_0 = const()[name = string("x1_73_end_0"), val = tensor([1, 24, 0, 64])]; + tensor x1_73_end_mask_0 = const()[name = string("x1_73_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_73_cast_fp16 = slice_by_index(begin = x1_73_begin_0, end = x1_73_end_0, end_mask = x1_73_end_mask_0, x = q_37_cast_fp16)[name = string("x1_73_cast_fp16")]; + tensor x2_73_begin_0 = const()[name = string("x2_73_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_73_end_0 = const()[name = string("x2_73_end_0"), val = tensor([1, 24, 0, 128])]; + tensor x2_73_end_mask_0 = const()[name = string("x2_73_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_73_cast_fp16 = slice_by_index(begin = x2_73_begin_0, end = x2_73_end_0, end_mask = x2_73_end_mask_0, x = q_37_cast_fp16)[name = string("x2_73_cast_fp16")]; + fp16 const_39_promoted_to_fp16 = const()[name = string("const_39_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_3446_cast_fp16 = mul(x = x2_73_cast_fp16, y = const_39_promoted_to_fp16)[name = string("op_3446_cast_fp16")]; + bool var_3448_interleave_0 = const()[name = string("op_3448_interleave_0"), val = bool(false)]; + tensor var_3448_cast_fp16 = concat(axis = var_72, interleave = var_3448_interleave_0, values = (var_3446_cast_fp16, x1_73_cast_fp16))[name = string("op_3448_cast_fp16")]; + tensor var_3449_cast_fp16 = mul(x = var_3448_cast_fp16, y = sin_7_cast_fp16)[name = string("op_3449_cast_fp16")]; + tensor query_states_75_cast_fp16 = add(x = var_3435_cast_fp16, y = var_3449_cast_fp16)[name = string("query_states_75_cast_fp16")]; + tensor k_37_cast_fp16 = transpose(perm = k_37_perm_0, x = var_3428_cast_fp16)[name = string("transpose_38")]; + tensor var_3451_cast_fp16 = mul(x = k_37_cast_fp16, y = cos_7_cast_fp16)[name = string("op_3451_cast_fp16")]; + tensor x1_75_begin_0 = const()[name = string("x1_75_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_75_end_0 = const()[name = string("x1_75_end_0"), val = tensor([1, 8, 0, 64])]; + tensor x1_75_end_mask_0 = const()[name = string("x1_75_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_75_cast_fp16 = slice_by_index(begin = x1_75_begin_0, end = x1_75_end_0, end_mask = x1_75_end_mask_0, x = k_37_cast_fp16)[name = string("x1_75_cast_fp16")]; + tensor x2_75_begin_0 = const()[name = string("x2_75_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_75_end_0 = const()[name = string("x2_75_end_0"), val = tensor([1, 8, 0, 128])]; + tensor x2_75_end_mask_0 = const()[name = string("x2_75_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_75_cast_fp16 = slice_by_index(begin = x2_75_begin_0, end = x2_75_end_0, end_mask = x2_75_end_mask_0, x = k_37_cast_fp16)[name = string("x2_75_cast_fp16")]; + fp16 const_40_promoted_to_fp16 = const()[name = string("const_40_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_3462_cast_fp16 = mul(x = x2_75_cast_fp16, y = const_40_promoted_to_fp16)[name = string("op_3462_cast_fp16")]; + bool var_3464_interleave_0 = const()[name = string("op_3464_interleave_0"), val = bool(false)]; + tensor var_3464_cast_fp16 = concat(axis = var_72, interleave = var_3464_interleave_0, values = (var_3462_cast_fp16, x1_75_cast_fp16))[name = string("op_3464_cast_fp16")]; + tensor var_3465_cast_fp16 = mul(x = var_3464_cast_fp16, y = sin_7_cast_fp16)[name = string("op_3465_cast_fp16")]; + tensor k_state_37_cast_fp16 = add(x = var_3451_cast_fp16, y = var_3465_cast_fp16)[name = string("k_state_37_cast_fp16")]; + tensor expand_dims_216 = const()[name = string("expand_dims_216"), val = tensor([0])]; + tensor expand_dims_217 = const()[name = string("expand_dims_217"), val = tensor([0])]; + tensor expand_dims_219 = const()[name = string("expand_dims_219"), val = tensor([0])]; + tensor concat_347_values0_0 = const()[name = string("concat_347_values0_0"), val = tensor([18])]; + int32 concat_347_axis_0 = const()[name = string("concat_347_axis_0"), val = int32(0)]; + bool concat_347_interleave_0 = const()[name = string("concat_347_interleave_0"), val = bool(false)]; + tensor concat_347 = concat(axis = concat_347_axis_0, interleave = concat_347_interleave_0, values = (concat_347_values0_0, expand_dims_216, expand_dims_217, expand_dims_2, expand_dims_219))[name = string("concat_347")]; + tensor key_cache_internal_tensor_assign_19_stride_0 = const()[name = string("key_cache_internal_tensor_assign_19_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor key_cache_internal_tensor_assign_19_begin_mask_0 = const()[name = string("key_cache_internal_tensor_assign_19_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_19_end_mask_0 = const()[name = string("key_cache_internal_tensor_assign_19_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor key_cache_internal_tensor_assign_19_squeeze_mask_0 = const()[name = string("key_cache_internal_tensor_assign_19_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_19_cast_fp16 = slice_update(begin = concat_347, begin_mask = key_cache_internal_tensor_assign_19_begin_mask_0, end = concat_6, end_mask = key_cache_internal_tensor_assign_19_end_mask_0, squeeze_mask = key_cache_internal_tensor_assign_19_squeeze_mask_0, stride = key_cache_internal_tensor_assign_19_stride_0, update = k_state_37_cast_fp16, x = coreml_update_state_90)[name = string("key_cache_internal_tensor_assign_19_cast_fp16")]; + write_state(data = key_cache_internal_tensor_assign_19_cast_fp16, input = key_cache)[name = string("coreml_update_state_92_write_state")]; + tensor coreml_update_state_92 = read_state(input = key_cache)[name = string("coreml_update_state_92")]; + tensor value_cache_internal_tensor_assign_19_stride_0 = const()[name = string("value_cache_internal_tensor_assign_19_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor value_cache_internal_tensor_assign_19_begin_mask_0 = const()[name = string("value_cache_internal_tensor_assign_19_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor value_cache_internal_tensor_assign_19_end_mask_0 = const()[name = string("value_cache_internal_tensor_assign_19_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor value_cache_internal_tensor_assign_19_squeeze_mask_0 = const()[name = string("value_cache_internal_tensor_assign_19_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor v_state_37_cast_fp16 = transpose(perm = v_state_37_perm_0, x = var_3431_cast_fp16)[name = string("transpose_37")]; + tensor value_cache_internal_tensor_assign_19_cast_fp16 = slice_update(begin = concat_347, begin_mask = value_cache_internal_tensor_assign_19_begin_mask_0, end = concat_6, end_mask = value_cache_internal_tensor_assign_19_end_mask_0, squeeze_mask = value_cache_internal_tensor_assign_19_squeeze_mask_0, stride = value_cache_internal_tensor_assign_19_stride_0, update = v_state_37_cast_fp16, x = coreml_update_state_91)[name = string("value_cache_internal_tensor_assign_19_cast_fp16")]; + write_state(data = value_cache_internal_tensor_assign_19_cast_fp16, input = value_cache)[name = string("coreml_update_state_93_write_state")]; + tensor coreml_update_state_93 = read_state(input = value_cache)[name = string("coreml_update_state_93")]; + tensor var_3488_begin_0 = const()[name = string("op_3488_begin_0"), val = tensor([18, 0, 0, 0, 0])]; + tensor var_3488_end_0 = const()[name = string("op_3488_end_0"), val = tensor([19, 1, 8, 2048, 128])]; + tensor var_3488_end_mask_0 = const()[name = string("op_3488_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_3488_squeeze_mask_0 = const()[name = string("op_3488_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_3488_cast_fp16 = slice_by_index(begin = var_3488_begin_0, end = var_3488_end_0, end_mask = var_3488_end_mask_0, squeeze_mask = var_3488_squeeze_mask_0, x = coreml_update_state_92)[name = string("op_3488_cast_fp16")]; + tensor var_3491_begin_0 = const()[name = string("op_3491_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_3491_end_mask_0 = const()[name = string("op_3491_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_3491_cast_fp16 = slice_by_index(begin = var_3491_begin_0, end = concat_11, end_mask = var_3491_end_mask_0, x = var_3488_cast_fp16)[name = string("op_3491_cast_fp16")]; + tensor var_3493_begin_0 = const()[name = string("op_3493_begin_0"), val = tensor([18, 0, 0, 0, 0])]; + tensor var_3493_end_0 = const()[name = string("op_3493_end_0"), val = tensor([19, 1, 8, 2048, 128])]; + tensor var_3493_end_mask_0 = const()[name = string("op_3493_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_3493_squeeze_mask_0 = const()[name = string("op_3493_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_3493_cast_fp16 = slice_by_index(begin = var_3493_begin_0, end = var_3493_end_0, end_mask = var_3493_end_mask_0, squeeze_mask = var_3493_squeeze_mask_0, x = coreml_update_state_93)[name = string("op_3493_cast_fp16")]; + tensor var_3496_begin_0 = const()[name = string("op_3496_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_3496_end_mask_0 = const()[name = string("op_3496_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_3496_cast_fp16 = slice_by_index(begin = var_3496_begin_0, end = concat_11, end_mask = var_3496_end_mask_0, x = var_3493_cast_fp16)[name = string("op_3496_cast_fp16")]; + tensor var_3498_shape_cast_fp16 = shape(x = var_3491_cast_fp16)[name = string("op_3498_shape_cast_fp16")]; + int32 gather_337 = const()[name = string("gather_337"), val = int32(1)]; + int32 gather_338 = const()[name = string("gather_338"), val = int32(8)]; + int32 gather_339_axis_0 = const()[name = string("gather_339_axis_0"), val = int32(0)]; + int32 gather_339_batch_dims_0 = const()[name = string("gather_339_batch_dims_0"), val = int32(0)]; + bool gather_339_validate_indices_0 = const()[name = string("gather_339_validate_indices_0"), val = bool(false)]; + string var_3498_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_3498_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_339_to_uint16 = const()[name = string("select_339_to_uint16"), val = uint16(2)]; + tensor var_3498_shape_cast_fp16_to_uint16 = cast(dtype = var_3498_shape_cast_fp16_to_uint16_dtype_0, x = var_3498_shape_cast_fp16)[name = string("cast_78")]; + uint16 gather_339_cast_uint16 = gather(axis = gather_339_axis_0, batch_dims = gather_339_batch_dims_0, indices = select_339_to_uint16, validate_indices = gather_339_validate_indices_0, x = var_3498_shape_cast_fp16_to_uint16)[name = string("gather_339_cast_uint16")]; + string gather_339_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_339_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_340 = const()[name = string("gather_340"), val = int32(128)]; + tensor var_3505_axes_0 = const()[name = string("op_3505_axes_0"), val = tensor([2])]; + tensor var_3505_cast_fp16 = expand_dims(axes = var_3505_axes_0, x = var_3491_cast_fp16)[name = string("op_3505_cast_fp16")]; + tensor shape_377_cast_fp16 = shape(x = var_3505_cast_fp16)[name = string("shape_377_cast_fp16")]; + int32 concat_355_axis_0 = const()[name = string("concat_355_axis_0"), val = int32(0)]; + bool concat_355_interleave_0 = const()[name = string("concat_355_interleave_0"), val = bool(false)]; + int32 gather_339_cast_uint16_to_int32 = cast(dtype = gather_339_cast_uint16_to_int32_dtype_0, x = gather_339_cast_uint16)[name = string("cast_77")]; + tensor concat_355 = concat(axis = concat_355_axis_0, interleave = concat_355_interleave_0, values = (gather_337, gather_338, var_81, gather_339_cast_uint16_to_int32, gather_340))[name = string("concat_355")]; + tensor real_div_36 = real_div(x = concat_355, y = shape_377_cast_fp16)[name = string("real_div_36")]; + tensor hidden_states_551_cast_fp16 = tile(reps = real_div_36, x = var_3505_cast_fp16)[name = string("hidden_states_551_cast_fp16")]; + tensor concat_356x = const()[name = string("concat_356x"), val = tensor([1, 24, -1, 128])]; + tensor key_states_75_cast_fp16 = reshape(shape = concat_356x, x = hidden_states_551_cast_fp16)[name = string("key_states_75_cast_fp16")]; + tensor var_3515_shape_cast_fp16 = shape(x = var_3496_cast_fp16)[name = string("op_3515_shape_cast_fp16")]; + int32 gather_341 = const()[name = string("gather_341"), val = int32(1)]; + int32 gather_342 = const()[name = string("gather_342"), val = int32(8)]; + int32 gather_343_axis_0 = const()[name = string("gather_343_axis_0"), val = int32(0)]; + int32 gather_343_batch_dims_0 = const()[name = string("gather_343_batch_dims_0"), val = int32(0)]; + bool gather_343_validate_indices_0 = const()[name = string("gather_343_validate_indices_0"), val = bool(false)]; + string var_3515_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_3515_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_343_to_uint16 = const()[name = string("select_343_to_uint16"), val = uint16(2)]; + tensor var_3515_shape_cast_fp16_to_uint16 = cast(dtype = var_3515_shape_cast_fp16_to_uint16_dtype_0, x = var_3515_shape_cast_fp16)[name = string("cast_76")]; + uint16 gather_343_cast_uint16 = gather(axis = gather_343_axis_0, batch_dims = gather_343_batch_dims_0, indices = select_343_to_uint16, validate_indices = gather_343_validate_indices_0, x = var_3515_shape_cast_fp16_to_uint16)[name = string("gather_343_cast_uint16")]; + string gather_343_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_343_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_344 = const()[name = string("gather_344"), val = int32(128)]; + tensor var_3522_axes_0 = const()[name = string("op_3522_axes_0"), val = tensor([2])]; + tensor var_3522_cast_fp16 = expand_dims(axes = var_3522_axes_0, x = var_3496_cast_fp16)[name = string("op_3522_cast_fp16")]; + tensor shape_382_cast_fp16 = shape(x = var_3522_cast_fp16)[name = string("shape_382_cast_fp16")]; + int32 concat_357_axis_0 = const()[name = string("concat_357_axis_0"), val = int32(0)]; + bool concat_357_interleave_0 = const()[name = string("concat_357_interleave_0"), val = bool(false)]; + int32 gather_343_cast_uint16_to_int32 = cast(dtype = gather_343_cast_uint16_to_int32_dtype_0, x = gather_343_cast_uint16)[name = string("cast_75")]; + tensor concat_357 = concat(axis = concat_357_axis_0, interleave = concat_357_interleave_0, values = (gather_341, gather_342, var_81, gather_343_cast_uint16_to_int32, gather_344))[name = string("concat_357")]; + tensor real_div_37 = real_div(x = concat_357, y = shape_382_cast_fp16)[name = string("real_div_37")]; + tensor hidden_states_555_cast_fp16 = tile(reps = real_div_37, x = var_3522_cast_fp16)[name = string("hidden_states_555_cast_fp16")]; + tensor concat_358x = const()[name = string("concat_358x"), val = tensor([1, 24, -1, 128])]; + tensor value_states_75_cast_fp16 = reshape(shape = concat_358x, x = hidden_states_555_cast_fp16)[name = string("value_states_75_cast_fp16")]; + tensor var_3532_shape_cast_fp16 = shape(x = key_states_75_cast_fp16)[name = string("op_3532_shape_cast_fp16")]; + int32 gather_345_axis_0 = const()[name = string("gather_345_axis_0"), val = int32(0)]; + int32 gather_345_batch_dims_0 = const()[name = string("gather_345_batch_dims_0"), val = int32(0)]; + bool gather_345_validate_indices_0 = const()[name = string("gather_345_validate_indices_0"), val = bool(false)]; + string var_3532_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_3532_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_345_to_uint16 = const()[name = string("select_345_to_uint16"), val = uint16(2)]; + tensor var_3532_shape_cast_fp16_to_uint16 = cast(dtype = var_3532_shape_cast_fp16_to_uint16_dtype_0, x = var_3532_shape_cast_fp16)[name = string("cast_74")]; + uint16 gather_345_cast_uint16 = gather(axis = gather_345_axis_0, batch_dims = gather_345_batch_dims_0, indices = select_345_to_uint16, validate_indices = gather_345_validate_indices_0, x = var_3532_shape_cast_fp16_to_uint16)[name = string("gather_345_cast_uint16")]; + string gather_345_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_345_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 concat_359_values0_0 = const()[name = string("concat_359_values0_0"), val = int32(1)]; + int32 concat_359_values1_0 = const()[name = string("concat_359_values1_0"), val = int32(1)]; + int32 concat_359_values2_0 = const()[name = string("concat_359_values2_0"), val = int32(0)]; + int32 concat_359_axis_0 = const()[name = string("concat_359_axis_0"), val = int32(0)]; + bool concat_359_interleave_0 = const()[name = string("concat_359_interleave_0"), val = bool(false)]; + int32 gather_345_cast_uint16_to_int32 = cast(dtype = gather_345_cast_uint16_to_int32_dtype_0, x = gather_345_cast_uint16)[name = string("cast_73")]; + tensor concat_359 = concat(axis = concat_359_axis_0, interleave = concat_359_interleave_0, values = (concat_359_values0_0, concat_359_values1_0, concat_359_values2_0, gather_345_cast_uint16_to_int32))[name = string("concat_359")]; + tensor causal_mask_39_begin_0 = const()[name = string("causal_mask_39_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor causal_mask_39_end_mask_0 = const()[name = string("causal_mask_39_end_mask_0"), val = tensor([true, true, true, false])]; + tensor causal_mask_39_cast_fp16 = slice_by_index(begin = causal_mask_39_begin_0, end = concat_359, end_mask = causal_mask_39_end_mask_0, x = causal_mask)[name = string("causal_mask_39_cast_fp16")]; + tensor attn_output_73_cast_fp16 = scaled_dot_product_attention(attn_mask = causal_mask_39_cast_fp16, key = key_states_75_cast_fp16, query = query_states_75_cast_fp16, value = value_states_75_cast_fp16)[name = string("attn_output_73_cast_fp16")]; + tensor var_3538_perm_0 = const()[name = string("op_3538_perm_0"), val = tensor([0, 2, 1, 3])]; + int32 concat_360_axis_0 = const()[name = string("concat_360_axis_0"), val = int32(0)]; + bool concat_360_interleave_0 = const()[name = string("concat_360_interleave_0"), val = bool(false)]; + int32 gather_329_cast_uint16_to_int32 = cast(dtype = gather_329_cast_uint16_to_int32_dtype_0, x = gather_329_cast_uint16)[name = string("cast_72")]; + tensor concat_360 = concat(axis = concat_360_axis_0, interleave = concat_360_interleave_0, values = (gather_328, gather_329_cast_uint16_to_int32, var_72))[name = string("concat_360")]; + tensor var_3538_cast_fp16 = transpose(perm = var_3538_perm_0, x = attn_output_73_cast_fp16)[name = string("transpose_36")]; + tensor input_145_cast_fp16 = reshape(shape = concat_360, x = var_3538_cast_fp16)[name = string("input_145_cast_fp16")]; + tensor model_model_layers_18_self_attn_o_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1249960960))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1254679616))))[name = string("model_model_layers_18_self_attn_o_proj_weight_to_fp16_quantized")]; + tensor linear_129_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_18_self_attn_o_proj_weight_to_fp16_quantized, x = input_145_cast_fp16)[name = string("linear_129_cast_fp16")]; + tensor hidden_states_559_cast_fp16 = add(x = hidden_states_539_cast_fp16, y = linear_129_cast_fp16)[name = string("hidden_states_559_cast_fp16")]; + fp16 var_78_promoted_37_to_fp16 = const()[name = string("op_78_promoted_37_to_fp16"), val = fp16(0x1p+1)]; + tensor var_3547_cast_fp16 = pow(x = hidden_states_559_cast_fp16, y = var_78_promoted_37_to_fp16)[name = string("op_3547_cast_fp16")]; + tensor variance_75_axes_0 = const()[name = string("variance_75_axes_0"), val = tensor([-1])]; + bool variance_75_keep_dims_0 = const()[name = string("variance_75_keep_dims_0"), val = bool(true)]; + tensor variance_75_cast_fp16 = reduce_mean(axes = variance_75_axes_0, keep_dims = variance_75_keep_dims_0, x = var_3547_cast_fp16)[name = string("variance_75_cast_fp16")]; + fp16 var_3550_to_fp16 = const()[name = string("op_3550_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_3551_cast_fp16 = add(x = variance_75_cast_fp16, y = var_3550_to_fp16)[name = string("op_3551_cast_fp16")]; + fp32 var_3552_epsilon_0 = const()[name = string("op_3552_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_3552_cast_fp16 = rsqrt(epsilon = var_3552_epsilon_0, x = var_3551_cast_fp16)[name = string("op_3552_cast_fp16")]; + tensor hidden_states_563_cast_fp16 = mul(x = hidden_states_559_cast_fp16, y = var_3552_cast_fp16)[name = string("hidden_states_563_cast_fp16")]; + tensor model_model_layers_18_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_18_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1255269504)))]; + tensor input_147_cast_fp16 = mul(x = model_model_layers_18_post_attention_layernorm_weight_to_fp16, y = hidden_states_563_cast_fp16)[name = string("input_147_cast_fp16")]; + tensor model_model_layers_18_mlp_gate_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1255275712))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1267858688))))[name = string("model_model_layers_18_mlp_gate_proj_weight_to_fp16_quantized")]; + tensor linear_130_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_18_mlp_gate_proj_weight_to_fp16_quantized, x = input_147_cast_fp16)[name = string("linear_130_cast_fp16")]; + tensor var_3564_cast_fp16 = silu(x = linear_130_cast_fp16)[name = string("op_3564_cast_fp16")]; + tensor model_model_layers_18_mlp_up_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1269431616))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1282014592))))[name = string("model_model_layers_18_mlp_up_proj_weight_to_fp16_quantized")]; + tensor linear_131_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_18_mlp_up_proj_weight_to_fp16_quantized, x = input_147_cast_fp16)[name = string("linear_131_cast_fp16")]; + tensor input_151_cast_fp16 = mul(x = var_3564_cast_fp16, y = linear_131_cast_fp16)[name = string("input_151_cast_fp16")]; + tensor model_model_layers_18_mlp_down_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1283587520))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1296170496))))[name = string("model_model_layers_18_mlp_down_proj_weight_to_fp16_quantized")]; + tensor linear_132_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_18_mlp_down_proj_weight_to_fp16_quantized, x = input_151_cast_fp16)[name = string("linear_132_cast_fp16")]; + tensor hidden_states_569_cast_fp16 = add(x = hidden_states_559_cast_fp16, y = linear_132_cast_fp16)[name = string("hidden_states_569_cast_fp16")]; + fp16 var_78_promoted_38_to_fp16 = const()[name = string("op_78_promoted_38_to_fp16"), val = fp16(0x1p+1)]; + tensor var_3577_cast_fp16 = pow(x = hidden_states_569_cast_fp16, y = var_78_promoted_38_to_fp16)[name = string("op_3577_cast_fp16")]; + tensor variance_77_axes_0 = const()[name = string("variance_77_axes_0"), val = tensor([-1])]; + bool variance_77_keep_dims_0 = const()[name = string("variance_77_keep_dims_0"), val = bool(true)]; + tensor variance_77_cast_fp16 = reduce_mean(axes = variance_77_axes_0, keep_dims = variance_77_keep_dims_0, x = var_3577_cast_fp16)[name = string("variance_77_cast_fp16")]; + fp16 var_3580_to_fp16 = const()[name = string("op_3580_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_3581_cast_fp16 = add(x = variance_77_cast_fp16, y = var_3580_to_fp16)[name = string("op_3581_cast_fp16")]; + fp32 var_3582_epsilon_0 = const()[name = string("op_3582_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_3582_cast_fp16 = rsqrt(epsilon = var_3582_epsilon_0, x = var_3581_cast_fp16)[name = string("op_3582_cast_fp16")]; + tensor hidden_states_573_cast_fp16 = mul(x = hidden_states_569_cast_fp16, y = var_3582_cast_fp16)[name = string("hidden_states_573_cast_fp16")]; + tensor model_model_layers_19_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_19_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1297743424)))]; + tensor hidden_states_577_cast_fp16 = mul(x = model_model_layers_19_input_layernorm_weight_to_fp16, y = hidden_states_573_cast_fp16)[name = string("hidden_states_577_cast_fp16")]; + tensor var_3593_shape_cast_fp16 = shape(x = hidden_states_577_cast_fp16)[name = string("op_3593_shape_cast_fp16")]; + int32 gather_346 = const()[name = string("gather_346"), val = int32(1)]; + int32 gather_347_axis_0 = const()[name = string("gather_347_axis_0"), val = int32(0)]; + int32 gather_347_batch_dims_0 = const()[name = string("gather_347_batch_dims_0"), val = int32(0)]; + bool gather_347_validate_indices_0 = const()[name = string("gather_347_validate_indices_0"), val = bool(false)]; + string var_3593_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_3593_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_347_to_uint16 = const()[name = string("select_347_to_uint16"), val = uint16(1)]; + tensor var_3593_shape_cast_fp16_to_uint16 = cast(dtype = var_3593_shape_cast_fp16_to_uint16_dtype_0, x = var_3593_shape_cast_fp16)[name = string("cast_71")]; + uint16 gather_347_cast_uint16 = gather(axis = gather_347_axis_0, batch_dims = gather_347_batch_dims_0, indices = select_347_to_uint16, validate_indices = gather_347_validate_indices_0, x = var_3593_shape_cast_fp16_to_uint16)[name = string("gather_347_cast_uint16")]; + string gather_347_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_347_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor model_model_layers_19_self_attn_q_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1297749632))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1302468288))))[name = string("model_model_layers_19_self_attn_q_proj_weight_to_fp16_quantized")]; + tensor linear_133_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_19_self_attn_q_proj_weight_to_fp16_quantized, x = hidden_states_577_cast_fp16)[name = string("linear_133_cast_fp16")]; + tensor model_model_layers_19_self_attn_k_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1303058176))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1304631104))))[name = string("model_model_layers_19_self_attn_k_proj_weight_to_fp16_quantized")]; + tensor linear_134_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_19_self_attn_k_proj_weight_to_fp16_quantized, x = hidden_states_577_cast_fp16)[name = string("linear_134_cast_fp16")]; + tensor model_model_layers_19_self_attn_v_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1304827776))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1306400704))))[name = string("model_model_layers_19_self_attn_v_proj_weight_to_fp16_quantized")]; + tensor linear_135_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_19_self_attn_v_proj_weight_to_fp16_quantized, x = hidden_states_577_cast_fp16)[name = string("linear_135_cast_fp16")]; + tensor concat_361x = const()[name = string("concat_361x"), val = tensor([1, -1, 24, 128])]; + tensor var_3602_cast_fp16 = reshape(shape = concat_361x, x = linear_133_cast_fp16)[name = string("op_3602_cast_fp16")]; + tensor q_39_perm_0 = const()[name = string("q_39_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_362x = const()[name = string("concat_362x"), val = tensor([1, -1, 8, 128])]; + tensor var_3605_cast_fp16 = reshape(shape = concat_362x, x = linear_134_cast_fp16)[name = string("op_3605_cast_fp16")]; + tensor k_39_perm_0 = const()[name = string("k_39_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_363x = const()[name = string("concat_363x"), val = tensor([1, -1, 8, 128])]; + tensor var_3608_cast_fp16 = reshape(shape = concat_363x, x = linear_135_cast_fp16)[name = string("op_3608_cast_fp16")]; + tensor v_state_39_perm_0 = const()[name = string("v_state_39_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor q_39_cast_fp16 = transpose(perm = q_39_perm_0, x = var_3602_cast_fp16)[name = string("transpose_35")]; + tensor var_3612_cast_fp16 = mul(x = q_39_cast_fp16, y = cos_7_cast_fp16)[name = string("op_3612_cast_fp16")]; + tensor x1_77_begin_0 = const()[name = string("x1_77_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_77_end_0 = const()[name = string("x1_77_end_0"), val = tensor([1, 24, 0, 64])]; + tensor x1_77_end_mask_0 = const()[name = string("x1_77_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_77_cast_fp16 = slice_by_index(begin = x1_77_begin_0, end = x1_77_end_0, end_mask = x1_77_end_mask_0, x = q_39_cast_fp16)[name = string("x1_77_cast_fp16")]; + tensor x2_77_begin_0 = const()[name = string("x2_77_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_77_end_0 = const()[name = string("x2_77_end_0"), val = tensor([1, 24, 0, 128])]; + tensor x2_77_end_mask_0 = const()[name = string("x2_77_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_77_cast_fp16 = slice_by_index(begin = x2_77_begin_0, end = x2_77_end_0, end_mask = x2_77_end_mask_0, x = q_39_cast_fp16)[name = string("x2_77_cast_fp16")]; + fp16 const_41_promoted_to_fp16 = const()[name = string("const_41_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_3623_cast_fp16 = mul(x = x2_77_cast_fp16, y = const_41_promoted_to_fp16)[name = string("op_3623_cast_fp16")]; + bool var_3625_interleave_0 = const()[name = string("op_3625_interleave_0"), val = bool(false)]; + tensor var_3625_cast_fp16 = concat(axis = var_72, interleave = var_3625_interleave_0, values = (var_3623_cast_fp16, x1_77_cast_fp16))[name = string("op_3625_cast_fp16")]; + tensor var_3626_cast_fp16 = mul(x = var_3625_cast_fp16, y = sin_7_cast_fp16)[name = string("op_3626_cast_fp16")]; + tensor query_states_79_cast_fp16 = add(x = var_3612_cast_fp16, y = var_3626_cast_fp16)[name = string("query_states_79_cast_fp16")]; + tensor k_39_cast_fp16 = transpose(perm = k_39_perm_0, x = var_3605_cast_fp16)[name = string("transpose_34")]; + tensor var_3628_cast_fp16 = mul(x = k_39_cast_fp16, y = cos_7_cast_fp16)[name = string("op_3628_cast_fp16")]; + tensor x1_79_begin_0 = const()[name = string("x1_79_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_79_end_0 = const()[name = string("x1_79_end_0"), val = tensor([1, 8, 0, 64])]; + tensor x1_79_end_mask_0 = const()[name = string("x1_79_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_79_cast_fp16 = slice_by_index(begin = x1_79_begin_0, end = x1_79_end_0, end_mask = x1_79_end_mask_0, x = k_39_cast_fp16)[name = string("x1_79_cast_fp16")]; + tensor x2_79_begin_0 = const()[name = string("x2_79_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_79_end_0 = const()[name = string("x2_79_end_0"), val = tensor([1, 8, 0, 128])]; + tensor x2_79_end_mask_0 = const()[name = string("x2_79_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_79_cast_fp16 = slice_by_index(begin = x2_79_begin_0, end = x2_79_end_0, end_mask = x2_79_end_mask_0, x = k_39_cast_fp16)[name = string("x2_79_cast_fp16")]; + fp16 const_42_promoted_to_fp16 = const()[name = string("const_42_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_3639_cast_fp16 = mul(x = x2_79_cast_fp16, y = const_42_promoted_to_fp16)[name = string("op_3639_cast_fp16")]; + bool var_3641_interleave_0 = const()[name = string("op_3641_interleave_0"), val = bool(false)]; + tensor var_3641_cast_fp16 = concat(axis = var_72, interleave = var_3641_interleave_0, values = (var_3639_cast_fp16, x1_79_cast_fp16))[name = string("op_3641_cast_fp16")]; + tensor var_3642_cast_fp16 = mul(x = var_3641_cast_fp16, y = sin_7_cast_fp16)[name = string("op_3642_cast_fp16")]; + tensor k_state_39_cast_fp16 = add(x = var_3628_cast_fp16, y = var_3642_cast_fp16)[name = string("k_state_39_cast_fp16")]; + tensor expand_dims_228 = const()[name = string("expand_dims_228"), val = tensor([0])]; + tensor expand_dims_229 = const()[name = string("expand_dims_229"), val = tensor([0])]; + tensor expand_dims_231 = const()[name = string("expand_dims_231"), val = tensor([0])]; + tensor concat_366_values0_0 = const()[name = string("concat_366_values0_0"), val = tensor([19])]; + int32 concat_366_axis_0 = const()[name = string("concat_366_axis_0"), val = int32(0)]; + bool concat_366_interleave_0 = const()[name = string("concat_366_interleave_0"), val = bool(false)]; + tensor concat_366 = concat(axis = concat_366_axis_0, interleave = concat_366_interleave_0, values = (concat_366_values0_0, expand_dims_228, expand_dims_229, expand_dims_2, expand_dims_231))[name = string("concat_366")]; + tensor key_cache_internal_tensor_assign_20_stride_0 = const()[name = string("key_cache_internal_tensor_assign_20_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor key_cache_internal_tensor_assign_20_begin_mask_0 = const()[name = string("key_cache_internal_tensor_assign_20_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_20_end_mask_0 = const()[name = string("key_cache_internal_tensor_assign_20_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor key_cache_internal_tensor_assign_20_squeeze_mask_0 = const()[name = string("key_cache_internal_tensor_assign_20_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_20_cast_fp16 = slice_update(begin = concat_366, begin_mask = key_cache_internal_tensor_assign_20_begin_mask_0, end = concat_6, end_mask = key_cache_internal_tensor_assign_20_end_mask_0, squeeze_mask = key_cache_internal_tensor_assign_20_squeeze_mask_0, stride = key_cache_internal_tensor_assign_20_stride_0, update = k_state_39_cast_fp16, x = coreml_update_state_92)[name = string("key_cache_internal_tensor_assign_20_cast_fp16")]; + write_state(data = key_cache_internal_tensor_assign_20_cast_fp16, input = key_cache)[name = string("coreml_update_state_94_write_state")]; + tensor coreml_update_state_94 = read_state(input = key_cache)[name = string("coreml_update_state_94")]; + tensor value_cache_internal_tensor_assign_20_stride_0 = const()[name = string("value_cache_internal_tensor_assign_20_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor value_cache_internal_tensor_assign_20_begin_mask_0 = const()[name = string("value_cache_internal_tensor_assign_20_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor value_cache_internal_tensor_assign_20_end_mask_0 = const()[name = string("value_cache_internal_tensor_assign_20_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor value_cache_internal_tensor_assign_20_squeeze_mask_0 = const()[name = string("value_cache_internal_tensor_assign_20_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor v_state_39_cast_fp16 = transpose(perm = v_state_39_perm_0, x = var_3608_cast_fp16)[name = string("transpose_33")]; + tensor value_cache_internal_tensor_assign_20_cast_fp16 = slice_update(begin = concat_366, begin_mask = value_cache_internal_tensor_assign_20_begin_mask_0, end = concat_6, end_mask = value_cache_internal_tensor_assign_20_end_mask_0, squeeze_mask = value_cache_internal_tensor_assign_20_squeeze_mask_0, stride = value_cache_internal_tensor_assign_20_stride_0, update = v_state_39_cast_fp16, x = coreml_update_state_93)[name = string("value_cache_internal_tensor_assign_20_cast_fp16")]; + write_state(data = value_cache_internal_tensor_assign_20_cast_fp16, input = value_cache)[name = string("coreml_update_state_95_write_state")]; + tensor coreml_update_state_95 = read_state(input = value_cache)[name = string("coreml_update_state_95")]; + tensor var_3665_begin_0 = const()[name = string("op_3665_begin_0"), val = tensor([19, 0, 0, 0, 0])]; + tensor var_3665_end_0 = const()[name = string("op_3665_end_0"), val = tensor([20, 1, 8, 2048, 128])]; + tensor var_3665_end_mask_0 = const()[name = string("op_3665_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_3665_squeeze_mask_0 = const()[name = string("op_3665_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_3665_cast_fp16 = slice_by_index(begin = var_3665_begin_0, end = var_3665_end_0, end_mask = var_3665_end_mask_0, squeeze_mask = var_3665_squeeze_mask_0, x = coreml_update_state_94)[name = string("op_3665_cast_fp16")]; + tensor var_3668_begin_0 = const()[name = string("op_3668_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_3668_end_mask_0 = const()[name = string("op_3668_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_3668_cast_fp16 = slice_by_index(begin = var_3668_begin_0, end = concat_11, end_mask = var_3668_end_mask_0, x = var_3665_cast_fp16)[name = string("op_3668_cast_fp16")]; + tensor var_3670_begin_0 = const()[name = string("op_3670_begin_0"), val = tensor([19, 0, 0, 0, 0])]; + tensor var_3670_end_0 = const()[name = string("op_3670_end_0"), val = tensor([20, 1, 8, 2048, 128])]; + tensor var_3670_end_mask_0 = const()[name = string("op_3670_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_3670_squeeze_mask_0 = const()[name = string("op_3670_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_3670_cast_fp16 = slice_by_index(begin = var_3670_begin_0, end = var_3670_end_0, end_mask = var_3670_end_mask_0, squeeze_mask = var_3670_squeeze_mask_0, x = coreml_update_state_95)[name = string("op_3670_cast_fp16")]; + tensor var_3673_begin_0 = const()[name = string("op_3673_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_3673_end_mask_0 = const()[name = string("op_3673_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_3673_cast_fp16 = slice_by_index(begin = var_3673_begin_0, end = concat_11, end_mask = var_3673_end_mask_0, x = var_3670_cast_fp16)[name = string("op_3673_cast_fp16")]; + tensor var_3675_shape_cast_fp16 = shape(x = var_3668_cast_fp16)[name = string("op_3675_shape_cast_fp16")]; + int32 gather_355 = const()[name = string("gather_355"), val = int32(1)]; + int32 gather_356 = const()[name = string("gather_356"), val = int32(8)]; + int32 gather_357_axis_0 = const()[name = string("gather_357_axis_0"), val = int32(0)]; + int32 gather_357_batch_dims_0 = const()[name = string("gather_357_batch_dims_0"), val = int32(0)]; + bool gather_357_validate_indices_0 = const()[name = string("gather_357_validate_indices_0"), val = bool(false)]; + string var_3675_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_3675_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_357_to_uint16 = const()[name = string("select_357_to_uint16"), val = uint16(2)]; + tensor var_3675_shape_cast_fp16_to_uint16 = cast(dtype = var_3675_shape_cast_fp16_to_uint16_dtype_0, x = var_3675_shape_cast_fp16)[name = string("cast_70")]; + uint16 gather_357_cast_uint16 = gather(axis = gather_357_axis_0, batch_dims = gather_357_batch_dims_0, indices = select_357_to_uint16, validate_indices = gather_357_validate_indices_0, x = var_3675_shape_cast_fp16_to_uint16)[name = string("gather_357_cast_uint16")]; + string gather_357_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_357_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_358 = const()[name = string("gather_358"), val = int32(128)]; + tensor var_3682_axes_0 = const()[name = string("op_3682_axes_0"), val = tensor([2])]; + tensor var_3682_cast_fp16 = expand_dims(axes = var_3682_axes_0, x = var_3668_cast_fp16)[name = string("op_3682_cast_fp16")]; + tensor shape_397_cast_fp16 = shape(x = var_3682_cast_fp16)[name = string("shape_397_cast_fp16")]; + int32 concat_374_axis_0 = const()[name = string("concat_374_axis_0"), val = int32(0)]; + bool concat_374_interleave_0 = const()[name = string("concat_374_interleave_0"), val = bool(false)]; + int32 gather_357_cast_uint16_to_int32 = cast(dtype = gather_357_cast_uint16_to_int32_dtype_0, x = gather_357_cast_uint16)[name = string("cast_69")]; + tensor concat_374 = concat(axis = concat_374_axis_0, interleave = concat_374_interleave_0, values = (gather_355, gather_356, var_81, gather_357_cast_uint16_to_int32, gather_358))[name = string("concat_374")]; + tensor real_div_38 = real_div(x = concat_374, y = shape_397_cast_fp16)[name = string("real_div_38")]; + tensor hidden_states_581_cast_fp16 = tile(reps = real_div_38, x = var_3682_cast_fp16)[name = string("hidden_states_581_cast_fp16")]; + tensor concat_375x = const()[name = string("concat_375x"), val = tensor([1, 24, -1, 128])]; + tensor key_states_79_cast_fp16 = reshape(shape = concat_375x, x = hidden_states_581_cast_fp16)[name = string("key_states_79_cast_fp16")]; + tensor var_3692_shape_cast_fp16 = shape(x = var_3673_cast_fp16)[name = string("op_3692_shape_cast_fp16")]; + int32 gather_359 = const()[name = string("gather_359"), val = int32(1)]; + int32 gather_360 = const()[name = string("gather_360"), val = int32(8)]; + int32 gather_361_axis_0 = const()[name = string("gather_361_axis_0"), val = int32(0)]; + int32 gather_361_batch_dims_0 = const()[name = string("gather_361_batch_dims_0"), val = int32(0)]; + bool gather_361_validate_indices_0 = const()[name = string("gather_361_validate_indices_0"), val = bool(false)]; + string var_3692_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_3692_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_361_to_uint16 = const()[name = string("select_361_to_uint16"), val = uint16(2)]; + tensor var_3692_shape_cast_fp16_to_uint16 = cast(dtype = var_3692_shape_cast_fp16_to_uint16_dtype_0, x = var_3692_shape_cast_fp16)[name = string("cast_68")]; + uint16 gather_361_cast_uint16 = gather(axis = gather_361_axis_0, batch_dims = gather_361_batch_dims_0, indices = select_361_to_uint16, validate_indices = gather_361_validate_indices_0, x = var_3692_shape_cast_fp16_to_uint16)[name = string("gather_361_cast_uint16")]; + string gather_361_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_361_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_362 = const()[name = string("gather_362"), val = int32(128)]; + tensor var_3699_axes_0 = const()[name = string("op_3699_axes_0"), val = tensor([2])]; + tensor var_3699_cast_fp16 = expand_dims(axes = var_3699_axes_0, x = var_3673_cast_fp16)[name = string("op_3699_cast_fp16")]; + tensor shape_402_cast_fp16 = shape(x = var_3699_cast_fp16)[name = string("shape_402_cast_fp16")]; + int32 concat_376_axis_0 = const()[name = string("concat_376_axis_0"), val = int32(0)]; + bool concat_376_interleave_0 = const()[name = string("concat_376_interleave_0"), val = bool(false)]; + int32 gather_361_cast_uint16_to_int32 = cast(dtype = gather_361_cast_uint16_to_int32_dtype_0, x = gather_361_cast_uint16)[name = string("cast_67")]; + tensor concat_376 = concat(axis = concat_376_axis_0, interleave = concat_376_interleave_0, values = (gather_359, gather_360, var_81, gather_361_cast_uint16_to_int32, gather_362))[name = string("concat_376")]; + tensor real_div_39 = real_div(x = concat_376, y = shape_402_cast_fp16)[name = string("real_div_39")]; + tensor hidden_states_585_cast_fp16 = tile(reps = real_div_39, x = var_3699_cast_fp16)[name = string("hidden_states_585_cast_fp16")]; + tensor concat_377x = const()[name = string("concat_377x"), val = tensor([1, 24, -1, 128])]; + tensor value_states_79_cast_fp16 = reshape(shape = concat_377x, x = hidden_states_585_cast_fp16)[name = string("value_states_79_cast_fp16")]; + tensor var_3709_shape_cast_fp16 = shape(x = key_states_79_cast_fp16)[name = string("op_3709_shape_cast_fp16")]; + int32 gather_363_axis_0 = const()[name = string("gather_363_axis_0"), val = int32(0)]; + int32 gather_363_batch_dims_0 = const()[name = string("gather_363_batch_dims_0"), val = int32(0)]; + bool gather_363_validate_indices_0 = const()[name = string("gather_363_validate_indices_0"), val = bool(false)]; + string var_3709_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_3709_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_363_to_uint16 = const()[name = string("select_363_to_uint16"), val = uint16(2)]; + tensor var_3709_shape_cast_fp16_to_uint16 = cast(dtype = var_3709_shape_cast_fp16_to_uint16_dtype_0, x = var_3709_shape_cast_fp16)[name = string("cast_66")]; + uint16 gather_363_cast_uint16 = gather(axis = gather_363_axis_0, batch_dims = gather_363_batch_dims_0, indices = select_363_to_uint16, validate_indices = gather_363_validate_indices_0, x = var_3709_shape_cast_fp16_to_uint16)[name = string("gather_363_cast_uint16")]; + string gather_363_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_363_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 concat_378_values0_0 = const()[name = string("concat_378_values0_0"), val = int32(1)]; + int32 concat_378_values1_0 = const()[name = string("concat_378_values1_0"), val = int32(1)]; + int32 concat_378_values2_0 = const()[name = string("concat_378_values2_0"), val = int32(0)]; + int32 concat_378_axis_0 = const()[name = string("concat_378_axis_0"), val = int32(0)]; + bool concat_378_interleave_0 = const()[name = string("concat_378_interleave_0"), val = bool(false)]; + int32 gather_363_cast_uint16_to_int32 = cast(dtype = gather_363_cast_uint16_to_int32_dtype_0, x = gather_363_cast_uint16)[name = string("cast_65")]; + tensor concat_378 = concat(axis = concat_378_axis_0, interleave = concat_378_interleave_0, values = (concat_378_values0_0, concat_378_values1_0, concat_378_values2_0, gather_363_cast_uint16_to_int32))[name = string("concat_378")]; + tensor causal_mask_41_begin_0 = const()[name = string("causal_mask_41_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor causal_mask_41_end_mask_0 = const()[name = string("causal_mask_41_end_mask_0"), val = tensor([true, true, true, false])]; + tensor causal_mask_41_cast_fp16 = slice_by_index(begin = causal_mask_41_begin_0, end = concat_378, end_mask = causal_mask_41_end_mask_0, x = causal_mask)[name = string("causal_mask_41_cast_fp16")]; + tensor attn_output_77_cast_fp16 = scaled_dot_product_attention(attn_mask = causal_mask_41_cast_fp16, key = key_states_79_cast_fp16, query = query_states_79_cast_fp16, value = value_states_79_cast_fp16)[name = string("attn_output_77_cast_fp16")]; + tensor var_3715_perm_0 = const()[name = string("op_3715_perm_0"), val = tensor([0, 2, 1, 3])]; + int32 concat_379_axis_0 = const()[name = string("concat_379_axis_0"), val = int32(0)]; + bool concat_379_interleave_0 = const()[name = string("concat_379_interleave_0"), val = bool(false)]; + int32 gather_347_cast_uint16_to_int32 = cast(dtype = gather_347_cast_uint16_to_int32_dtype_0, x = gather_347_cast_uint16)[name = string("cast_64")]; + tensor concat_379 = concat(axis = concat_379_axis_0, interleave = concat_379_interleave_0, values = (gather_346, gather_347_cast_uint16_to_int32, var_72))[name = string("concat_379")]; + tensor var_3715_cast_fp16 = transpose(perm = var_3715_perm_0, x = attn_output_77_cast_fp16)[name = string("transpose_32")]; + tensor input_153_cast_fp16 = reshape(shape = concat_379, x = var_3715_cast_fp16)[name = string("input_153_cast_fp16")]; + tensor model_model_layers_19_self_attn_o_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1306597376))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1311316032))))[name = string("model_model_layers_19_self_attn_o_proj_weight_to_fp16_quantized")]; + tensor linear_136_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_19_self_attn_o_proj_weight_to_fp16_quantized, x = input_153_cast_fp16)[name = string("linear_136_cast_fp16")]; + tensor hidden_states_589_cast_fp16 = add(x = hidden_states_569_cast_fp16, y = linear_136_cast_fp16)[name = string("hidden_states_589_cast_fp16")]; + fp16 var_78_promoted_39_to_fp16 = const()[name = string("op_78_promoted_39_to_fp16"), val = fp16(0x1p+1)]; + tensor var_3724_cast_fp16 = pow(x = hidden_states_589_cast_fp16, y = var_78_promoted_39_to_fp16)[name = string("op_3724_cast_fp16")]; + tensor variance_79_axes_0 = const()[name = string("variance_79_axes_0"), val = tensor([-1])]; + bool variance_79_keep_dims_0 = const()[name = string("variance_79_keep_dims_0"), val = bool(true)]; + tensor variance_79_cast_fp16 = reduce_mean(axes = variance_79_axes_0, keep_dims = variance_79_keep_dims_0, x = var_3724_cast_fp16)[name = string("variance_79_cast_fp16")]; + fp16 var_3727_to_fp16 = const()[name = string("op_3727_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_3728_cast_fp16 = add(x = variance_79_cast_fp16, y = var_3727_to_fp16)[name = string("op_3728_cast_fp16")]; + fp32 var_3729_epsilon_0 = const()[name = string("op_3729_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_3729_cast_fp16 = rsqrt(epsilon = var_3729_epsilon_0, x = var_3728_cast_fp16)[name = string("op_3729_cast_fp16")]; + tensor hidden_states_593_cast_fp16 = mul(x = hidden_states_589_cast_fp16, y = var_3729_cast_fp16)[name = string("hidden_states_593_cast_fp16")]; + tensor model_model_layers_19_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_19_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1311905920)))]; + tensor input_155_cast_fp16 = mul(x = model_model_layers_19_post_attention_layernorm_weight_to_fp16, y = hidden_states_593_cast_fp16)[name = string("input_155_cast_fp16")]; + tensor model_model_layers_19_mlp_gate_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1311912128))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1324495104))))[name = string("model_model_layers_19_mlp_gate_proj_weight_to_fp16_quantized")]; + tensor linear_137_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_19_mlp_gate_proj_weight_to_fp16_quantized, x = input_155_cast_fp16)[name = string("linear_137_cast_fp16")]; + tensor var_3741_cast_fp16 = silu(x = linear_137_cast_fp16)[name = string("op_3741_cast_fp16")]; + tensor model_model_layers_19_mlp_up_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1326068032))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1338651008))))[name = string("model_model_layers_19_mlp_up_proj_weight_to_fp16_quantized")]; + tensor linear_138_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_19_mlp_up_proj_weight_to_fp16_quantized, x = input_155_cast_fp16)[name = string("linear_138_cast_fp16")]; + tensor input_159_cast_fp16 = mul(x = var_3741_cast_fp16, y = linear_138_cast_fp16)[name = string("input_159_cast_fp16")]; + tensor model_model_layers_19_mlp_down_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1340223936))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1352806912))))[name = string("model_model_layers_19_mlp_down_proj_weight_to_fp16_quantized")]; + tensor linear_139_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_19_mlp_down_proj_weight_to_fp16_quantized, x = input_159_cast_fp16)[name = string("linear_139_cast_fp16")]; + tensor hidden_states_599_cast_fp16 = add(x = hidden_states_589_cast_fp16, y = linear_139_cast_fp16)[name = string("hidden_states_599_cast_fp16")]; + fp16 var_78_promoted_40_to_fp16 = const()[name = string("op_78_promoted_40_to_fp16"), val = fp16(0x1p+1)]; + tensor var_3754_cast_fp16 = pow(x = hidden_states_599_cast_fp16, y = var_78_promoted_40_to_fp16)[name = string("op_3754_cast_fp16")]; + tensor variance_81_axes_0 = const()[name = string("variance_81_axes_0"), val = tensor([-1])]; + bool variance_81_keep_dims_0 = const()[name = string("variance_81_keep_dims_0"), val = bool(true)]; + tensor variance_81_cast_fp16 = reduce_mean(axes = variance_81_axes_0, keep_dims = variance_81_keep_dims_0, x = var_3754_cast_fp16)[name = string("variance_81_cast_fp16")]; + fp16 var_3757_to_fp16 = const()[name = string("op_3757_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_3758_cast_fp16 = add(x = variance_81_cast_fp16, y = var_3757_to_fp16)[name = string("op_3758_cast_fp16")]; + fp32 var_3759_epsilon_0 = const()[name = string("op_3759_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_3759_cast_fp16 = rsqrt(epsilon = var_3759_epsilon_0, x = var_3758_cast_fp16)[name = string("op_3759_cast_fp16")]; + tensor hidden_states_603_cast_fp16 = mul(x = hidden_states_599_cast_fp16, y = var_3759_cast_fp16)[name = string("hidden_states_603_cast_fp16")]; + tensor model_model_layers_20_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_20_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1354379840)))]; + tensor hidden_states_607_cast_fp16 = mul(x = model_model_layers_20_input_layernorm_weight_to_fp16, y = hidden_states_603_cast_fp16)[name = string("hidden_states_607_cast_fp16")]; + tensor var_3770_shape_cast_fp16 = shape(x = hidden_states_607_cast_fp16)[name = string("op_3770_shape_cast_fp16")]; + int32 gather_364 = const()[name = string("gather_364"), val = int32(1)]; + int32 gather_365_axis_0 = const()[name = string("gather_365_axis_0"), val = int32(0)]; + int32 gather_365_batch_dims_0 = const()[name = string("gather_365_batch_dims_0"), val = int32(0)]; + bool gather_365_validate_indices_0 = const()[name = string("gather_365_validate_indices_0"), val = bool(false)]; + string var_3770_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_3770_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_365_to_uint16 = const()[name = string("select_365_to_uint16"), val = uint16(1)]; + tensor var_3770_shape_cast_fp16_to_uint16 = cast(dtype = var_3770_shape_cast_fp16_to_uint16_dtype_0, x = var_3770_shape_cast_fp16)[name = string("cast_63")]; + uint16 gather_365_cast_uint16 = gather(axis = gather_365_axis_0, batch_dims = gather_365_batch_dims_0, indices = select_365_to_uint16, validate_indices = gather_365_validate_indices_0, x = var_3770_shape_cast_fp16_to_uint16)[name = string("gather_365_cast_uint16")]; + string gather_365_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_365_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor model_model_layers_20_self_attn_q_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1354386048))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1359104704))))[name = string("model_model_layers_20_self_attn_q_proj_weight_to_fp16_quantized")]; + tensor linear_140_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_20_self_attn_q_proj_weight_to_fp16_quantized, x = hidden_states_607_cast_fp16)[name = string("linear_140_cast_fp16")]; + tensor model_model_layers_20_self_attn_k_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1359694592))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1361267520))))[name = string("model_model_layers_20_self_attn_k_proj_weight_to_fp16_quantized")]; + tensor linear_141_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_20_self_attn_k_proj_weight_to_fp16_quantized, x = hidden_states_607_cast_fp16)[name = string("linear_141_cast_fp16")]; + tensor model_model_layers_20_self_attn_v_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1361464192))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1363037120))))[name = string("model_model_layers_20_self_attn_v_proj_weight_to_fp16_quantized")]; + tensor linear_142_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_20_self_attn_v_proj_weight_to_fp16_quantized, x = hidden_states_607_cast_fp16)[name = string("linear_142_cast_fp16")]; + tensor concat_380x = const()[name = string("concat_380x"), val = tensor([1, -1, 24, 128])]; + tensor var_3779_cast_fp16 = reshape(shape = concat_380x, x = linear_140_cast_fp16)[name = string("op_3779_cast_fp16")]; + tensor q_41_perm_0 = const()[name = string("q_41_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_381x = const()[name = string("concat_381x"), val = tensor([1, -1, 8, 128])]; + tensor var_3782_cast_fp16 = reshape(shape = concat_381x, x = linear_141_cast_fp16)[name = string("op_3782_cast_fp16")]; + tensor k_41_perm_0 = const()[name = string("k_41_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_382x = const()[name = string("concat_382x"), val = tensor([1, -1, 8, 128])]; + tensor var_3785_cast_fp16 = reshape(shape = concat_382x, x = linear_142_cast_fp16)[name = string("op_3785_cast_fp16")]; + tensor v_state_41_perm_0 = const()[name = string("v_state_41_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor q_41_cast_fp16 = transpose(perm = q_41_perm_0, x = var_3779_cast_fp16)[name = string("transpose_31")]; + tensor var_3789_cast_fp16 = mul(x = q_41_cast_fp16, y = cos_7_cast_fp16)[name = string("op_3789_cast_fp16")]; + tensor x1_81_begin_0 = const()[name = string("x1_81_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_81_end_0 = const()[name = string("x1_81_end_0"), val = tensor([1, 24, 0, 64])]; + tensor x1_81_end_mask_0 = const()[name = string("x1_81_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_81_cast_fp16 = slice_by_index(begin = x1_81_begin_0, end = x1_81_end_0, end_mask = x1_81_end_mask_0, x = q_41_cast_fp16)[name = string("x1_81_cast_fp16")]; + tensor x2_81_begin_0 = const()[name = string("x2_81_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_81_end_0 = const()[name = string("x2_81_end_0"), val = tensor([1, 24, 0, 128])]; + tensor x2_81_end_mask_0 = const()[name = string("x2_81_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_81_cast_fp16 = slice_by_index(begin = x2_81_begin_0, end = x2_81_end_0, end_mask = x2_81_end_mask_0, x = q_41_cast_fp16)[name = string("x2_81_cast_fp16")]; + fp16 const_43_promoted_to_fp16 = const()[name = string("const_43_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_3800_cast_fp16 = mul(x = x2_81_cast_fp16, y = const_43_promoted_to_fp16)[name = string("op_3800_cast_fp16")]; + bool var_3802_interleave_0 = const()[name = string("op_3802_interleave_0"), val = bool(false)]; + tensor var_3802_cast_fp16 = concat(axis = var_72, interleave = var_3802_interleave_0, values = (var_3800_cast_fp16, x1_81_cast_fp16))[name = string("op_3802_cast_fp16")]; + tensor var_3803_cast_fp16 = mul(x = var_3802_cast_fp16, y = sin_7_cast_fp16)[name = string("op_3803_cast_fp16")]; + tensor query_states_83_cast_fp16 = add(x = var_3789_cast_fp16, y = var_3803_cast_fp16)[name = string("query_states_83_cast_fp16")]; + tensor k_41_cast_fp16 = transpose(perm = k_41_perm_0, x = var_3782_cast_fp16)[name = string("transpose_30")]; + tensor var_3805_cast_fp16 = mul(x = k_41_cast_fp16, y = cos_7_cast_fp16)[name = string("op_3805_cast_fp16")]; + tensor x1_83_begin_0 = const()[name = string("x1_83_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_83_end_0 = const()[name = string("x1_83_end_0"), val = tensor([1, 8, 0, 64])]; + tensor x1_83_end_mask_0 = const()[name = string("x1_83_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_83_cast_fp16 = slice_by_index(begin = x1_83_begin_0, end = x1_83_end_0, end_mask = x1_83_end_mask_0, x = k_41_cast_fp16)[name = string("x1_83_cast_fp16")]; + tensor x2_83_begin_0 = const()[name = string("x2_83_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_83_end_0 = const()[name = string("x2_83_end_0"), val = tensor([1, 8, 0, 128])]; + tensor x2_83_end_mask_0 = const()[name = string("x2_83_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_83_cast_fp16 = slice_by_index(begin = x2_83_begin_0, end = x2_83_end_0, end_mask = x2_83_end_mask_0, x = k_41_cast_fp16)[name = string("x2_83_cast_fp16")]; + fp16 const_44_promoted_to_fp16 = const()[name = string("const_44_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_3816_cast_fp16 = mul(x = x2_83_cast_fp16, y = const_44_promoted_to_fp16)[name = string("op_3816_cast_fp16")]; + bool var_3818_interleave_0 = const()[name = string("op_3818_interleave_0"), val = bool(false)]; + tensor var_3818_cast_fp16 = concat(axis = var_72, interleave = var_3818_interleave_0, values = (var_3816_cast_fp16, x1_83_cast_fp16))[name = string("op_3818_cast_fp16")]; + tensor var_3819_cast_fp16 = mul(x = var_3818_cast_fp16, y = sin_7_cast_fp16)[name = string("op_3819_cast_fp16")]; + tensor k_state_41_cast_fp16 = add(x = var_3805_cast_fp16, y = var_3819_cast_fp16)[name = string("k_state_41_cast_fp16")]; + tensor expand_dims_240 = const()[name = string("expand_dims_240"), val = tensor([0])]; + tensor expand_dims_241 = const()[name = string("expand_dims_241"), val = tensor([0])]; + tensor expand_dims_243 = const()[name = string("expand_dims_243"), val = tensor([0])]; + tensor concat_385_values0_0 = const()[name = string("concat_385_values0_0"), val = tensor([20])]; + int32 concat_385_axis_0 = const()[name = string("concat_385_axis_0"), val = int32(0)]; + bool concat_385_interleave_0 = const()[name = string("concat_385_interleave_0"), val = bool(false)]; + tensor concat_385 = concat(axis = concat_385_axis_0, interleave = concat_385_interleave_0, values = (concat_385_values0_0, expand_dims_240, expand_dims_241, expand_dims_2, expand_dims_243))[name = string("concat_385")]; + tensor key_cache_internal_tensor_assign_21_stride_0 = const()[name = string("key_cache_internal_tensor_assign_21_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor key_cache_internal_tensor_assign_21_begin_mask_0 = const()[name = string("key_cache_internal_tensor_assign_21_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_21_end_mask_0 = const()[name = string("key_cache_internal_tensor_assign_21_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor key_cache_internal_tensor_assign_21_squeeze_mask_0 = const()[name = string("key_cache_internal_tensor_assign_21_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_21_cast_fp16 = slice_update(begin = concat_385, begin_mask = key_cache_internal_tensor_assign_21_begin_mask_0, end = concat_6, end_mask = key_cache_internal_tensor_assign_21_end_mask_0, squeeze_mask = key_cache_internal_tensor_assign_21_squeeze_mask_0, stride = key_cache_internal_tensor_assign_21_stride_0, update = k_state_41_cast_fp16, x = coreml_update_state_94)[name = string("key_cache_internal_tensor_assign_21_cast_fp16")]; + write_state(data = key_cache_internal_tensor_assign_21_cast_fp16, input = key_cache)[name = string("coreml_update_state_96_write_state")]; + tensor coreml_update_state_96 = read_state(input = key_cache)[name = string("coreml_update_state_96")]; + tensor value_cache_internal_tensor_assign_21_stride_0 = const()[name = string("value_cache_internal_tensor_assign_21_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor value_cache_internal_tensor_assign_21_begin_mask_0 = const()[name = string("value_cache_internal_tensor_assign_21_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor value_cache_internal_tensor_assign_21_end_mask_0 = const()[name = string("value_cache_internal_tensor_assign_21_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor value_cache_internal_tensor_assign_21_squeeze_mask_0 = const()[name = string("value_cache_internal_tensor_assign_21_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor v_state_41_cast_fp16 = transpose(perm = v_state_41_perm_0, x = var_3785_cast_fp16)[name = string("transpose_29")]; + tensor value_cache_internal_tensor_assign_21_cast_fp16 = slice_update(begin = concat_385, begin_mask = value_cache_internal_tensor_assign_21_begin_mask_0, end = concat_6, end_mask = value_cache_internal_tensor_assign_21_end_mask_0, squeeze_mask = value_cache_internal_tensor_assign_21_squeeze_mask_0, stride = value_cache_internal_tensor_assign_21_stride_0, update = v_state_41_cast_fp16, x = coreml_update_state_95)[name = string("value_cache_internal_tensor_assign_21_cast_fp16")]; + write_state(data = value_cache_internal_tensor_assign_21_cast_fp16, input = value_cache)[name = string("coreml_update_state_97_write_state")]; + tensor coreml_update_state_97 = read_state(input = value_cache)[name = string("coreml_update_state_97")]; + tensor var_3842_begin_0 = const()[name = string("op_3842_begin_0"), val = tensor([20, 0, 0, 0, 0])]; + tensor var_3842_end_0 = const()[name = string("op_3842_end_0"), val = tensor([21, 1, 8, 2048, 128])]; + tensor var_3842_end_mask_0 = const()[name = string("op_3842_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_3842_squeeze_mask_0 = const()[name = string("op_3842_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_3842_cast_fp16 = slice_by_index(begin = var_3842_begin_0, end = var_3842_end_0, end_mask = var_3842_end_mask_0, squeeze_mask = var_3842_squeeze_mask_0, x = coreml_update_state_96)[name = string("op_3842_cast_fp16")]; + tensor var_3845_begin_0 = const()[name = string("op_3845_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_3845_end_mask_0 = const()[name = string("op_3845_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_3845_cast_fp16 = slice_by_index(begin = var_3845_begin_0, end = concat_11, end_mask = var_3845_end_mask_0, x = var_3842_cast_fp16)[name = string("op_3845_cast_fp16")]; + tensor var_3847_begin_0 = const()[name = string("op_3847_begin_0"), val = tensor([20, 0, 0, 0, 0])]; + tensor var_3847_end_0 = const()[name = string("op_3847_end_0"), val = tensor([21, 1, 8, 2048, 128])]; + tensor var_3847_end_mask_0 = const()[name = string("op_3847_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_3847_squeeze_mask_0 = const()[name = string("op_3847_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_3847_cast_fp16 = slice_by_index(begin = var_3847_begin_0, end = var_3847_end_0, end_mask = var_3847_end_mask_0, squeeze_mask = var_3847_squeeze_mask_0, x = coreml_update_state_97)[name = string("op_3847_cast_fp16")]; + tensor var_3850_begin_0 = const()[name = string("op_3850_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_3850_end_mask_0 = const()[name = string("op_3850_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_3850_cast_fp16 = slice_by_index(begin = var_3850_begin_0, end = concat_11, end_mask = var_3850_end_mask_0, x = var_3847_cast_fp16)[name = string("op_3850_cast_fp16")]; + tensor var_3852_shape_cast_fp16 = shape(x = var_3845_cast_fp16)[name = string("op_3852_shape_cast_fp16")]; + int32 gather_373 = const()[name = string("gather_373"), val = int32(1)]; + int32 gather_374 = const()[name = string("gather_374"), val = int32(8)]; + int32 gather_375_axis_0 = const()[name = string("gather_375_axis_0"), val = int32(0)]; + int32 gather_375_batch_dims_0 = const()[name = string("gather_375_batch_dims_0"), val = int32(0)]; + bool gather_375_validate_indices_0 = const()[name = string("gather_375_validate_indices_0"), val = bool(false)]; + string var_3852_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_3852_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_375_to_uint16 = const()[name = string("select_375_to_uint16"), val = uint16(2)]; + tensor var_3852_shape_cast_fp16_to_uint16 = cast(dtype = var_3852_shape_cast_fp16_to_uint16_dtype_0, x = var_3852_shape_cast_fp16)[name = string("cast_62")]; + uint16 gather_375_cast_uint16 = gather(axis = gather_375_axis_0, batch_dims = gather_375_batch_dims_0, indices = select_375_to_uint16, validate_indices = gather_375_validate_indices_0, x = var_3852_shape_cast_fp16_to_uint16)[name = string("gather_375_cast_uint16")]; + string gather_375_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_375_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_376 = const()[name = string("gather_376"), val = int32(128)]; + tensor var_3859_axes_0 = const()[name = string("op_3859_axes_0"), val = tensor([2])]; + tensor var_3859_cast_fp16 = expand_dims(axes = var_3859_axes_0, x = var_3845_cast_fp16)[name = string("op_3859_cast_fp16")]; + tensor shape_417_cast_fp16 = shape(x = var_3859_cast_fp16)[name = string("shape_417_cast_fp16")]; + int32 concat_393_axis_0 = const()[name = string("concat_393_axis_0"), val = int32(0)]; + bool concat_393_interleave_0 = const()[name = string("concat_393_interleave_0"), val = bool(false)]; + int32 gather_375_cast_uint16_to_int32 = cast(dtype = gather_375_cast_uint16_to_int32_dtype_0, x = gather_375_cast_uint16)[name = string("cast_61")]; + tensor concat_393 = concat(axis = concat_393_axis_0, interleave = concat_393_interleave_0, values = (gather_373, gather_374, var_81, gather_375_cast_uint16_to_int32, gather_376))[name = string("concat_393")]; + tensor real_div_40 = real_div(x = concat_393, y = shape_417_cast_fp16)[name = string("real_div_40")]; + tensor hidden_states_611_cast_fp16 = tile(reps = real_div_40, x = var_3859_cast_fp16)[name = string("hidden_states_611_cast_fp16")]; + tensor concat_394x = const()[name = string("concat_394x"), val = tensor([1, 24, -1, 128])]; + tensor key_states_83_cast_fp16 = reshape(shape = concat_394x, x = hidden_states_611_cast_fp16)[name = string("key_states_83_cast_fp16")]; + tensor var_3869_shape_cast_fp16 = shape(x = var_3850_cast_fp16)[name = string("op_3869_shape_cast_fp16")]; + int32 gather_377 = const()[name = string("gather_377"), val = int32(1)]; + int32 gather_378 = const()[name = string("gather_378"), val = int32(8)]; + int32 gather_379_axis_0 = const()[name = string("gather_379_axis_0"), val = int32(0)]; + int32 gather_379_batch_dims_0 = const()[name = string("gather_379_batch_dims_0"), val = int32(0)]; + bool gather_379_validate_indices_0 = const()[name = string("gather_379_validate_indices_0"), val = bool(false)]; + string var_3869_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_3869_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_379_to_uint16 = const()[name = string("select_379_to_uint16"), val = uint16(2)]; + tensor var_3869_shape_cast_fp16_to_uint16 = cast(dtype = var_3869_shape_cast_fp16_to_uint16_dtype_0, x = var_3869_shape_cast_fp16)[name = string("cast_60")]; + uint16 gather_379_cast_uint16 = gather(axis = gather_379_axis_0, batch_dims = gather_379_batch_dims_0, indices = select_379_to_uint16, validate_indices = gather_379_validate_indices_0, x = var_3869_shape_cast_fp16_to_uint16)[name = string("gather_379_cast_uint16")]; + string gather_379_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_379_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_380 = const()[name = string("gather_380"), val = int32(128)]; + tensor var_3876_axes_0 = const()[name = string("op_3876_axes_0"), val = tensor([2])]; + tensor var_3876_cast_fp16 = expand_dims(axes = var_3876_axes_0, x = var_3850_cast_fp16)[name = string("op_3876_cast_fp16")]; + tensor shape_422_cast_fp16 = shape(x = var_3876_cast_fp16)[name = string("shape_422_cast_fp16")]; + int32 concat_395_axis_0 = const()[name = string("concat_395_axis_0"), val = int32(0)]; + bool concat_395_interleave_0 = const()[name = string("concat_395_interleave_0"), val = bool(false)]; + int32 gather_379_cast_uint16_to_int32 = cast(dtype = gather_379_cast_uint16_to_int32_dtype_0, x = gather_379_cast_uint16)[name = string("cast_59")]; + tensor concat_395 = concat(axis = concat_395_axis_0, interleave = concat_395_interleave_0, values = (gather_377, gather_378, var_81, gather_379_cast_uint16_to_int32, gather_380))[name = string("concat_395")]; + tensor real_div_41 = real_div(x = concat_395, y = shape_422_cast_fp16)[name = string("real_div_41")]; + tensor hidden_states_615_cast_fp16 = tile(reps = real_div_41, x = var_3876_cast_fp16)[name = string("hidden_states_615_cast_fp16")]; + tensor concat_396x = const()[name = string("concat_396x"), val = tensor([1, 24, -1, 128])]; + tensor value_states_83_cast_fp16 = reshape(shape = concat_396x, x = hidden_states_615_cast_fp16)[name = string("value_states_83_cast_fp16")]; + tensor var_3886_shape_cast_fp16 = shape(x = key_states_83_cast_fp16)[name = string("op_3886_shape_cast_fp16")]; + int32 gather_381_axis_0 = const()[name = string("gather_381_axis_0"), val = int32(0)]; + int32 gather_381_batch_dims_0 = const()[name = string("gather_381_batch_dims_0"), val = int32(0)]; + bool gather_381_validate_indices_0 = const()[name = string("gather_381_validate_indices_0"), val = bool(false)]; + string var_3886_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_3886_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_381_to_uint16 = const()[name = string("select_381_to_uint16"), val = uint16(2)]; + tensor var_3886_shape_cast_fp16_to_uint16 = cast(dtype = var_3886_shape_cast_fp16_to_uint16_dtype_0, x = var_3886_shape_cast_fp16)[name = string("cast_58")]; + uint16 gather_381_cast_uint16 = gather(axis = gather_381_axis_0, batch_dims = gather_381_batch_dims_0, indices = select_381_to_uint16, validate_indices = gather_381_validate_indices_0, x = var_3886_shape_cast_fp16_to_uint16)[name = string("gather_381_cast_uint16")]; + string gather_381_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_381_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 concat_397_values0_0 = const()[name = string("concat_397_values0_0"), val = int32(1)]; + int32 concat_397_values1_0 = const()[name = string("concat_397_values1_0"), val = int32(1)]; + int32 concat_397_values2_0 = const()[name = string("concat_397_values2_0"), val = int32(0)]; + int32 concat_397_axis_0 = const()[name = string("concat_397_axis_0"), val = int32(0)]; + bool concat_397_interleave_0 = const()[name = string("concat_397_interleave_0"), val = bool(false)]; + int32 gather_381_cast_uint16_to_int32 = cast(dtype = gather_381_cast_uint16_to_int32_dtype_0, x = gather_381_cast_uint16)[name = string("cast_57")]; + tensor concat_397 = concat(axis = concat_397_axis_0, interleave = concat_397_interleave_0, values = (concat_397_values0_0, concat_397_values1_0, concat_397_values2_0, gather_381_cast_uint16_to_int32))[name = string("concat_397")]; + tensor causal_mask_43_begin_0 = const()[name = string("causal_mask_43_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor causal_mask_43_end_mask_0 = const()[name = string("causal_mask_43_end_mask_0"), val = tensor([true, true, true, false])]; + tensor causal_mask_43_cast_fp16 = slice_by_index(begin = causal_mask_43_begin_0, end = concat_397, end_mask = causal_mask_43_end_mask_0, x = causal_mask)[name = string("causal_mask_43_cast_fp16")]; + tensor attn_output_81_cast_fp16 = scaled_dot_product_attention(attn_mask = causal_mask_43_cast_fp16, key = key_states_83_cast_fp16, query = query_states_83_cast_fp16, value = value_states_83_cast_fp16)[name = string("attn_output_81_cast_fp16")]; + tensor var_3892_perm_0 = const()[name = string("op_3892_perm_0"), val = tensor([0, 2, 1, 3])]; + int32 concat_398_axis_0 = const()[name = string("concat_398_axis_0"), val = int32(0)]; + bool concat_398_interleave_0 = const()[name = string("concat_398_interleave_0"), val = bool(false)]; + int32 gather_365_cast_uint16_to_int32 = cast(dtype = gather_365_cast_uint16_to_int32_dtype_0, x = gather_365_cast_uint16)[name = string("cast_56")]; + tensor concat_398 = concat(axis = concat_398_axis_0, interleave = concat_398_interleave_0, values = (gather_364, gather_365_cast_uint16_to_int32, var_72))[name = string("concat_398")]; + tensor var_3892_cast_fp16 = transpose(perm = var_3892_perm_0, x = attn_output_81_cast_fp16)[name = string("transpose_28")]; + tensor input_161_cast_fp16 = reshape(shape = concat_398, x = var_3892_cast_fp16)[name = string("input_161_cast_fp16")]; + tensor model_model_layers_20_self_attn_o_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1363233792))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1367952448))))[name = string("model_model_layers_20_self_attn_o_proj_weight_to_fp16_quantized")]; + tensor linear_143_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_20_self_attn_o_proj_weight_to_fp16_quantized, x = input_161_cast_fp16)[name = string("linear_143_cast_fp16")]; + tensor hidden_states_619_cast_fp16 = add(x = hidden_states_599_cast_fp16, y = linear_143_cast_fp16)[name = string("hidden_states_619_cast_fp16")]; + fp16 var_78_promoted_41_to_fp16 = const()[name = string("op_78_promoted_41_to_fp16"), val = fp16(0x1p+1)]; + tensor var_3901_cast_fp16 = pow(x = hidden_states_619_cast_fp16, y = var_78_promoted_41_to_fp16)[name = string("op_3901_cast_fp16")]; + tensor variance_83_axes_0 = const()[name = string("variance_83_axes_0"), val = tensor([-1])]; + bool variance_83_keep_dims_0 = const()[name = string("variance_83_keep_dims_0"), val = bool(true)]; + tensor variance_83_cast_fp16 = reduce_mean(axes = variance_83_axes_0, keep_dims = variance_83_keep_dims_0, x = var_3901_cast_fp16)[name = string("variance_83_cast_fp16")]; + fp16 var_3904_to_fp16 = const()[name = string("op_3904_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_3905_cast_fp16 = add(x = variance_83_cast_fp16, y = var_3904_to_fp16)[name = string("op_3905_cast_fp16")]; + fp32 var_3906_epsilon_0 = const()[name = string("op_3906_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_3906_cast_fp16 = rsqrt(epsilon = var_3906_epsilon_0, x = var_3905_cast_fp16)[name = string("op_3906_cast_fp16")]; + tensor hidden_states_623_cast_fp16 = mul(x = hidden_states_619_cast_fp16, y = var_3906_cast_fp16)[name = string("hidden_states_623_cast_fp16")]; + tensor model_model_layers_20_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_20_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1368542336)))]; + tensor input_163_cast_fp16 = mul(x = model_model_layers_20_post_attention_layernorm_weight_to_fp16, y = hidden_states_623_cast_fp16)[name = string("input_163_cast_fp16")]; + tensor model_model_layers_20_mlp_gate_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1368548544))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1381131520))))[name = string("model_model_layers_20_mlp_gate_proj_weight_to_fp16_quantized")]; + tensor linear_144_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_20_mlp_gate_proj_weight_to_fp16_quantized, x = input_163_cast_fp16)[name = string("linear_144_cast_fp16")]; + tensor var_3918_cast_fp16 = silu(x = linear_144_cast_fp16)[name = string("op_3918_cast_fp16")]; + tensor model_model_layers_20_mlp_up_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1382704448))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1395287424))))[name = string("model_model_layers_20_mlp_up_proj_weight_to_fp16_quantized")]; + tensor linear_145_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_20_mlp_up_proj_weight_to_fp16_quantized, x = input_163_cast_fp16)[name = string("linear_145_cast_fp16")]; + tensor input_167_cast_fp16 = mul(x = var_3918_cast_fp16, y = linear_145_cast_fp16)[name = string("input_167_cast_fp16")]; + tensor model_model_layers_20_mlp_down_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1396860352))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1409443328))))[name = string("model_model_layers_20_mlp_down_proj_weight_to_fp16_quantized")]; + tensor linear_146_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_20_mlp_down_proj_weight_to_fp16_quantized, x = input_167_cast_fp16)[name = string("linear_146_cast_fp16")]; + tensor hidden_states_629_cast_fp16 = add(x = hidden_states_619_cast_fp16, y = linear_146_cast_fp16)[name = string("hidden_states_629_cast_fp16")]; + fp16 var_78_promoted_42_to_fp16 = const()[name = string("op_78_promoted_42_to_fp16"), val = fp16(0x1p+1)]; + tensor var_3931_cast_fp16 = pow(x = hidden_states_629_cast_fp16, y = var_78_promoted_42_to_fp16)[name = string("op_3931_cast_fp16")]; + tensor variance_85_axes_0 = const()[name = string("variance_85_axes_0"), val = tensor([-1])]; + bool variance_85_keep_dims_0 = const()[name = string("variance_85_keep_dims_0"), val = bool(true)]; + tensor variance_85_cast_fp16 = reduce_mean(axes = variance_85_axes_0, keep_dims = variance_85_keep_dims_0, x = var_3931_cast_fp16)[name = string("variance_85_cast_fp16")]; + fp16 var_3934_to_fp16 = const()[name = string("op_3934_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_3935_cast_fp16 = add(x = variance_85_cast_fp16, y = var_3934_to_fp16)[name = string("op_3935_cast_fp16")]; + fp32 var_3936_epsilon_0 = const()[name = string("op_3936_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_3936_cast_fp16 = rsqrt(epsilon = var_3936_epsilon_0, x = var_3935_cast_fp16)[name = string("op_3936_cast_fp16")]; + tensor hidden_states_633_cast_fp16 = mul(x = hidden_states_629_cast_fp16, y = var_3936_cast_fp16)[name = string("hidden_states_633_cast_fp16")]; + tensor model_model_layers_21_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_21_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1411016256)))]; + tensor hidden_states_637_cast_fp16 = mul(x = model_model_layers_21_input_layernorm_weight_to_fp16, y = hidden_states_633_cast_fp16)[name = string("hidden_states_637_cast_fp16")]; + tensor var_3947_shape_cast_fp16 = shape(x = hidden_states_637_cast_fp16)[name = string("op_3947_shape_cast_fp16")]; + int32 gather_382 = const()[name = string("gather_382"), val = int32(1)]; + int32 gather_383_axis_0 = const()[name = string("gather_383_axis_0"), val = int32(0)]; + int32 gather_383_batch_dims_0 = const()[name = string("gather_383_batch_dims_0"), val = int32(0)]; + bool gather_383_validate_indices_0 = const()[name = string("gather_383_validate_indices_0"), val = bool(false)]; + string var_3947_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_3947_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_383_to_uint16 = const()[name = string("select_383_to_uint16"), val = uint16(1)]; + tensor var_3947_shape_cast_fp16_to_uint16 = cast(dtype = var_3947_shape_cast_fp16_to_uint16_dtype_0, x = var_3947_shape_cast_fp16)[name = string("cast_55")]; + uint16 gather_383_cast_uint16 = gather(axis = gather_383_axis_0, batch_dims = gather_383_batch_dims_0, indices = select_383_to_uint16, validate_indices = gather_383_validate_indices_0, x = var_3947_shape_cast_fp16_to_uint16)[name = string("gather_383_cast_uint16")]; + string gather_383_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_383_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor model_model_layers_21_self_attn_q_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1411022464))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1415741120))))[name = string("model_model_layers_21_self_attn_q_proj_weight_to_fp16_quantized")]; + tensor linear_147_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_21_self_attn_q_proj_weight_to_fp16_quantized, x = hidden_states_637_cast_fp16)[name = string("linear_147_cast_fp16")]; + tensor model_model_layers_21_self_attn_k_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1416331008))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1417903936))))[name = string("model_model_layers_21_self_attn_k_proj_weight_to_fp16_quantized")]; + tensor linear_148_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_21_self_attn_k_proj_weight_to_fp16_quantized, x = hidden_states_637_cast_fp16)[name = string("linear_148_cast_fp16")]; + tensor model_model_layers_21_self_attn_v_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1418100608))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1419673536))))[name = string("model_model_layers_21_self_attn_v_proj_weight_to_fp16_quantized")]; + tensor linear_149_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_21_self_attn_v_proj_weight_to_fp16_quantized, x = hidden_states_637_cast_fp16)[name = string("linear_149_cast_fp16")]; + tensor concat_399x = const()[name = string("concat_399x"), val = tensor([1, -1, 24, 128])]; + tensor var_3956_cast_fp16 = reshape(shape = concat_399x, x = linear_147_cast_fp16)[name = string("op_3956_cast_fp16")]; + tensor q_43_perm_0 = const()[name = string("q_43_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_400x = const()[name = string("concat_400x"), val = tensor([1, -1, 8, 128])]; + tensor var_3959_cast_fp16 = reshape(shape = concat_400x, x = linear_148_cast_fp16)[name = string("op_3959_cast_fp16")]; + tensor k_43_perm_0 = const()[name = string("k_43_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_401x = const()[name = string("concat_401x"), val = tensor([1, -1, 8, 128])]; + tensor var_3962_cast_fp16 = reshape(shape = concat_401x, x = linear_149_cast_fp16)[name = string("op_3962_cast_fp16")]; + tensor v_state_43_perm_0 = const()[name = string("v_state_43_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor q_43_cast_fp16 = transpose(perm = q_43_perm_0, x = var_3956_cast_fp16)[name = string("transpose_27")]; + tensor var_3966_cast_fp16 = mul(x = q_43_cast_fp16, y = cos_7_cast_fp16)[name = string("op_3966_cast_fp16")]; + tensor x1_85_begin_0 = const()[name = string("x1_85_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_85_end_0 = const()[name = string("x1_85_end_0"), val = tensor([1, 24, 0, 64])]; + tensor x1_85_end_mask_0 = const()[name = string("x1_85_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_85_cast_fp16 = slice_by_index(begin = x1_85_begin_0, end = x1_85_end_0, end_mask = x1_85_end_mask_0, x = q_43_cast_fp16)[name = string("x1_85_cast_fp16")]; + tensor x2_85_begin_0 = const()[name = string("x2_85_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_85_end_0 = const()[name = string("x2_85_end_0"), val = tensor([1, 24, 0, 128])]; + tensor x2_85_end_mask_0 = const()[name = string("x2_85_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_85_cast_fp16 = slice_by_index(begin = x2_85_begin_0, end = x2_85_end_0, end_mask = x2_85_end_mask_0, x = q_43_cast_fp16)[name = string("x2_85_cast_fp16")]; + fp16 const_45_promoted_to_fp16 = const()[name = string("const_45_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_3977_cast_fp16 = mul(x = x2_85_cast_fp16, y = const_45_promoted_to_fp16)[name = string("op_3977_cast_fp16")]; + bool var_3979_interleave_0 = const()[name = string("op_3979_interleave_0"), val = bool(false)]; + tensor var_3979_cast_fp16 = concat(axis = var_72, interleave = var_3979_interleave_0, values = (var_3977_cast_fp16, x1_85_cast_fp16))[name = string("op_3979_cast_fp16")]; + tensor var_3980_cast_fp16 = mul(x = var_3979_cast_fp16, y = sin_7_cast_fp16)[name = string("op_3980_cast_fp16")]; + tensor query_states_87_cast_fp16 = add(x = var_3966_cast_fp16, y = var_3980_cast_fp16)[name = string("query_states_87_cast_fp16")]; + tensor k_43_cast_fp16 = transpose(perm = k_43_perm_0, x = var_3959_cast_fp16)[name = string("transpose_26")]; + tensor var_3982_cast_fp16 = mul(x = k_43_cast_fp16, y = cos_7_cast_fp16)[name = string("op_3982_cast_fp16")]; + tensor x1_87_begin_0 = const()[name = string("x1_87_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_87_end_0 = const()[name = string("x1_87_end_0"), val = tensor([1, 8, 0, 64])]; + tensor x1_87_end_mask_0 = const()[name = string("x1_87_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_87_cast_fp16 = slice_by_index(begin = x1_87_begin_0, end = x1_87_end_0, end_mask = x1_87_end_mask_0, x = k_43_cast_fp16)[name = string("x1_87_cast_fp16")]; + tensor x2_87_begin_0 = const()[name = string("x2_87_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_87_end_0 = const()[name = string("x2_87_end_0"), val = tensor([1, 8, 0, 128])]; + tensor x2_87_end_mask_0 = const()[name = string("x2_87_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_87_cast_fp16 = slice_by_index(begin = x2_87_begin_0, end = x2_87_end_0, end_mask = x2_87_end_mask_0, x = k_43_cast_fp16)[name = string("x2_87_cast_fp16")]; + fp16 const_46_promoted_to_fp16 = const()[name = string("const_46_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_3993_cast_fp16 = mul(x = x2_87_cast_fp16, y = const_46_promoted_to_fp16)[name = string("op_3993_cast_fp16")]; + bool var_3995_interleave_0 = const()[name = string("op_3995_interleave_0"), val = bool(false)]; + tensor var_3995_cast_fp16 = concat(axis = var_72, interleave = var_3995_interleave_0, values = (var_3993_cast_fp16, x1_87_cast_fp16))[name = string("op_3995_cast_fp16")]; + tensor var_3996_cast_fp16 = mul(x = var_3995_cast_fp16, y = sin_7_cast_fp16)[name = string("op_3996_cast_fp16")]; + tensor k_state_43_cast_fp16 = add(x = var_3982_cast_fp16, y = var_3996_cast_fp16)[name = string("k_state_43_cast_fp16")]; + tensor expand_dims_252 = const()[name = string("expand_dims_252"), val = tensor([0])]; + tensor expand_dims_253 = const()[name = string("expand_dims_253"), val = tensor([0])]; + tensor expand_dims_255 = const()[name = string("expand_dims_255"), val = tensor([0])]; + tensor concat_404_values0_0 = const()[name = string("concat_404_values0_0"), val = tensor([21])]; + int32 concat_404_axis_0 = const()[name = string("concat_404_axis_0"), val = int32(0)]; + bool concat_404_interleave_0 = const()[name = string("concat_404_interleave_0"), val = bool(false)]; + tensor concat_404 = concat(axis = concat_404_axis_0, interleave = concat_404_interleave_0, values = (concat_404_values0_0, expand_dims_252, expand_dims_253, expand_dims_2, expand_dims_255))[name = string("concat_404")]; + tensor key_cache_internal_tensor_assign_22_stride_0 = const()[name = string("key_cache_internal_tensor_assign_22_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor key_cache_internal_tensor_assign_22_begin_mask_0 = const()[name = string("key_cache_internal_tensor_assign_22_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_22_end_mask_0 = const()[name = string("key_cache_internal_tensor_assign_22_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor key_cache_internal_tensor_assign_22_squeeze_mask_0 = const()[name = string("key_cache_internal_tensor_assign_22_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_22_cast_fp16 = slice_update(begin = concat_404, begin_mask = key_cache_internal_tensor_assign_22_begin_mask_0, end = concat_6, end_mask = key_cache_internal_tensor_assign_22_end_mask_0, squeeze_mask = key_cache_internal_tensor_assign_22_squeeze_mask_0, stride = key_cache_internal_tensor_assign_22_stride_0, update = k_state_43_cast_fp16, x = coreml_update_state_96)[name = string("key_cache_internal_tensor_assign_22_cast_fp16")]; + write_state(data = key_cache_internal_tensor_assign_22_cast_fp16, input = key_cache)[name = string("coreml_update_state_98_write_state")]; + tensor coreml_update_state_98 = read_state(input = key_cache)[name = string("coreml_update_state_98")]; + tensor value_cache_internal_tensor_assign_22_stride_0 = const()[name = string("value_cache_internal_tensor_assign_22_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor value_cache_internal_tensor_assign_22_begin_mask_0 = const()[name = string("value_cache_internal_tensor_assign_22_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor value_cache_internal_tensor_assign_22_end_mask_0 = const()[name = string("value_cache_internal_tensor_assign_22_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor value_cache_internal_tensor_assign_22_squeeze_mask_0 = const()[name = string("value_cache_internal_tensor_assign_22_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor v_state_43_cast_fp16 = transpose(perm = v_state_43_perm_0, x = var_3962_cast_fp16)[name = string("transpose_25")]; + tensor value_cache_internal_tensor_assign_22_cast_fp16 = slice_update(begin = concat_404, begin_mask = value_cache_internal_tensor_assign_22_begin_mask_0, end = concat_6, end_mask = value_cache_internal_tensor_assign_22_end_mask_0, squeeze_mask = value_cache_internal_tensor_assign_22_squeeze_mask_0, stride = value_cache_internal_tensor_assign_22_stride_0, update = v_state_43_cast_fp16, x = coreml_update_state_97)[name = string("value_cache_internal_tensor_assign_22_cast_fp16")]; + write_state(data = value_cache_internal_tensor_assign_22_cast_fp16, input = value_cache)[name = string("coreml_update_state_99_write_state")]; + tensor coreml_update_state_99 = read_state(input = value_cache)[name = string("coreml_update_state_99")]; + tensor var_4019_begin_0 = const()[name = string("op_4019_begin_0"), val = tensor([21, 0, 0, 0, 0])]; + tensor var_4019_end_0 = const()[name = string("op_4019_end_0"), val = tensor([22, 1, 8, 2048, 128])]; + tensor var_4019_end_mask_0 = const()[name = string("op_4019_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_4019_squeeze_mask_0 = const()[name = string("op_4019_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_4019_cast_fp16 = slice_by_index(begin = var_4019_begin_0, end = var_4019_end_0, end_mask = var_4019_end_mask_0, squeeze_mask = var_4019_squeeze_mask_0, x = coreml_update_state_98)[name = string("op_4019_cast_fp16")]; + tensor var_4022_begin_0 = const()[name = string("op_4022_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_4022_end_mask_0 = const()[name = string("op_4022_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_4022_cast_fp16 = slice_by_index(begin = var_4022_begin_0, end = concat_11, end_mask = var_4022_end_mask_0, x = var_4019_cast_fp16)[name = string("op_4022_cast_fp16")]; + tensor var_4024_begin_0 = const()[name = string("op_4024_begin_0"), val = tensor([21, 0, 0, 0, 0])]; + tensor var_4024_end_0 = const()[name = string("op_4024_end_0"), val = tensor([22, 1, 8, 2048, 128])]; + tensor var_4024_end_mask_0 = const()[name = string("op_4024_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_4024_squeeze_mask_0 = const()[name = string("op_4024_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_4024_cast_fp16 = slice_by_index(begin = var_4024_begin_0, end = var_4024_end_0, end_mask = var_4024_end_mask_0, squeeze_mask = var_4024_squeeze_mask_0, x = coreml_update_state_99)[name = string("op_4024_cast_fp16")]; + tensor var_4027_begin_0 = const()[name = string("op_4027_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_4027_end_mask_0 = const()[name = string("op_4027_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_4027_cast_fp16 = slice_by_index(begin = var_4027_begin_0, end = concat_11, end_mask = var_4027_end_mask_0, x = var_4024_cast_fp16)[name = string("op_4027_cast_fp16")]; + tensor var_4029_shape_cast_fp16 = shape(x = var_4022_cast_fp16)[name = string("op_4029_shape_cast_fp16")]; + int32 gather_391 = const()[name = string("gather_391"), val = int32(1)]; + int32 gather_392 = const()[name = string("gather_392"), val = int32(8)]; + int32 gather_393_axis_0 = const()[name = string("gather_393_axis_0"), val = int32(0)]; + int32 gather_393_batch_dims_0 = const()[name = string("gather_393_batch_dims_0"), val = int32(0)]; + bool gather_393_validate_indices_0 = const()[name = string("gather_393_validate_indices_0"), val = bool(false)]; + string var_4029_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_4029_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_393_to_uint16 = const()[name = string("select_393_to_uint16"), val = uint16(2)]; + tensor var_4029_shape_cast_fp16_to_uint16 = cast(dtype = var_4029_shape_cast_fp16_to_uint16_dtype_0, x = var_4029_shape_cast_fp16)[name = string("cast_54")]; + uint16 gather_393_cast_uint16 = gather(axis = gather_393_axis_0, batch_dims = gather_393_batch_dims_0, indices = select_393_to_uint16, validate_indices = gather_393_validate_indices_0, x = var_4029_shape_cast_fp16_to_uint16)[name = string("gather_393_cast_uint16")]; + string gather_393_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_393_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_394 = const()[name = string("gather_394"), val = int32(128)]; + tensor var_4036_axes_0 = const()[name = string("op_4036_axes_0"), val = tensor([2])]; + tensor var_4036_cast_fp16 = expand_dims(axes = var_4036_axes_0, x = var_4022_cast_fp16)[name = string("op_4036_cast_fp16")]; + tensor shape_437_cast_fp16 = shape(x = var_4036_cast_fp16)[name = string("shape_437_cast_fp16")]; + int32 concat_412_axis_0 = const()[name = string("concat_412_axis_0"), val = int32(0)]; + bool concat_412_interleave_0 = const()[name = string("concat_412_interleave_0"), val = bool(false)]; + int32 gather_393_cast_uint16_to_int32 = cast(dtype = gather_393_cast_uint16_to_int32_dtype_0, x = gather_393_cast_uint16)[name = string("cast_53")]; + tensor concat_412 = concat(axis = concat_412_axis_0, interleave = concat_412_interleave_0, values = (gather_391, gather_392, var_81, gather_393_cast_uint16_to_int32, gather_394))[name = string("concat_412")]; + tensor real_div_42 = real_div(x = concat_412, y = shape_437_cast_fp16)[name = string("real_div_42")]; + tensor hidden_states_641_cast_fp16 = tile(reps = real_div_42, x = var_4036_cast_fp16)[name = string("hidden_states_641_cast_fp16")]; + tensor concat_413x = const()[name = string("concat_413x"), val = tensor([1, 24, -1, 128])]; + tensor key_states_87_cast_fp16 = reshape(shape = concat_413x, x = hidden_states_641_cast_fp16)[name = string("key_states_87_cast_fp16")]; + tensor var_4046_shape_cast_fp16 = shape(x = var_4027_cast_fp16)[name = string("op_4046_shape_cast_fp16")]; + int32 gather_395 = const()[name = string("gather_395"), val = int32(1)]; + int32 gather_396 = const()[name = string("gather_396"), val = int32(8)]; + int32 gather_397_axis_0 = const()[name = string("gather_397_axis_0"), val = int32(0)]; + int32 gather_397_batch_dims_0 = const()[name = string("gather_397_batch_dims_0"), val = int32(0)]; + bool gather_397_validate_indices_0 = const()[name = string("gather_397_validate_indices_0"), val = bool(false)]; + string var_4046_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_4046_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_397_to_uint16 = const()[name = string("select_397_to_uint16"), val = uint16(2)]; + tensor var_4046_shape_cast_fp16_to_uint16 = cast(dtype = var_4046_shape_cast_fp16_to_uint16_dtype_0, x = var_4046_shape_cast_fp16)[name = string("cast_52")]; + uint16 gather_397_cast_uint16 = gather(axis = gather_397_axis_0, batch_dims = gather_397_batch_dims_0, indices = select_397_to_uint16, validate_indices = gather_397_validate_indices_0, x = var_4046_shape_cast_fp16_to_uint16)[name = string("gather_397_cast_uint16")]; + string gather_397_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_397_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_398 = const()[name = string("gather_398"), val = int32(128)]; + tensor var_4053_axes_0 = const()[name = string("op_4053_axes_0"), val = tensor([2])]; + tensor var_4053_cast_fp16 = expand_dims(axes = var_4053_axes_0, x = var_4027_cast_fp16)[name = string("op_4053_cast_fp16")]; + tensor shape_442_cast_fp16 = shape(x = var_4053_cast_fp16)[name = string("shape_442_cast_fp16")]; + int32 concat_414_axis_0 = const()[name = string("concat_414_axis_0"), val = int32(0)]; + bool concat_414_interleave_0 = const()[name = string("concat_414_interleave_0"), val = bool(false)]; + int32 gather_397_cast_uint16_to_int32 = cast(dtype = gather_397_cast_uint16_to_int32_dtype_0, x = gather_397_cast_uint16)[name = string("cast_51")]; + tensor concat_414 = concat(axis = concat_414_axis_0, interleave = concat_414_interleave_0, values = (gather_395, gather_396, var_81, gather_397_cast_uint16_to_int32, gather_398))[name = string("concat_414")]; + tensor real_div_43 = real_div(x = concat_414, y = shape_442_cast_fp16)[name = string("real_div_43")]; + tensor hidden_states_645_cast_fp16 = tile(reps = real_div_43, x = var_4053_cast_fp16)[name = string("hidden_states_645_cast_fp16")]; + tensor concat_415x = const()[name = string("concat_415x"), val = tensor([1, 24, -1, 128])]; + tensor value_states_87_cast_fp16 = reshape(shape = concat_415x, x = hidden_states_645_cast_fp16)[name = string("value_states_87_cast_fp16")]; + tensor var_4063_shape_cast_fp16 = shape(x = key_states_87_cast_fp16)[name = string("op_4063_shape_cast_fp16")]; + int32 gather_399_axis_0 = const()[name = string("gather_399_axis_0"), val = int32(0)]; + int32 gather_399_batch_dims_0 = const()[name = string("gather_399_batch_dims_0"), val = int32(0)]; + bool gather_399_validate_indices_0 = const()[name = string("gather_399_validate_indices_0"), val = bool(false)]; + string var_4063_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_4063_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_399_to_uint16 = const()[name = string("select_399_to_uint16"), val = uint16(2)]; + tensor var_4063_shape_cast_fp16_to_uint16 = cast(dtype = var_4063_shape_cast_fp16_to_uint16_dtype_0, x = var_4063_shape_cast_fp16)[name = string("cast_50")]; + uint16 gather_399_cast_uint16 = gather(axis = gather_399_axis_0, batch_dims = gather_399_batch_dims_0, indices = select_399_to_uint16, validate_indices = gather_399_validate_indices_0, x = var_4063_shape_cast_fp16_to_uint16)[name = string("gather_399_cast_uint16")]; + string gather_399_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_399_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 concat_416_values0_0 = const()[name = string("concat_416_values0_0"), val = int32(1)]; + int32 concat_416_values1_0 = const()[name = string("concat_416_values1_0"), val = int32(1)]; + int32 concat_416_values2_0 = const()[name = string("concat_416_values2_0"), val = int32(0)]; + int32 concat_416_axis_0 = const()[name = string("concat_416_axis_0"), val = int32(0)]; + bool concat_416_interleave_0 = const()[name = string("concat_416_interleave_0"), val = bool(false)]; + int32 gather_399_cast_uint16_to_int32 = cast(dtype = gather_399_cast_uint16_to_int32_dtype_0, x = gather_399_cast_uint16)[name = string("cast_49")]; + tensor concat_416 = concat(axis = concat_416_axis_0, interleave = concat_416_interleave_0, values = (concat_416_values0_0, concat_416_values1_0, concat_416_values2_0, gather_399_cast_uint16_to_int32))[name = string("concat_416")]; + tensor causal_mask_45_begin_0 = const()[name = string("causal_mask_45_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor causal_mask_45_end_mask_0 = const()[name = string("causal_mask_45_end_mask_0"), val = tensor([true, true, true, false])]; + tensor causal_mask_45_cast_fp16 = slice_by_index(begin = causal_mask_45_begin_0, end = concat_416, end_mask = causal_mask_45_end_mask_0, x = causal_mask)[name = string("causal_mask_45_cast_fp16")]; + tensor attn_output_85_cast_fp16 = scaled_dot_product_attention(attn_mask = causal_mask_45_cast_fp16, key = key_states_87_cast_fp16, query = query_states_87_cast_fp16, value = value_states_87_cast_fp16)[name = string("attn_output_85_cast_fp16")]; + tensor var_4069_perm_0 = const()[name = string("op_4069_perm_0"), val = tensor([0, 2, 1, 3])]; + int32 concat_417_axis_0 = const()[name = string("concat_417_axis_0"), val = int32(0)]; + bool concat_417_interleave_0 = const()[name = string("concat_417_interleave_0"), val = bool(false)]; + int32 gather_383_cast_uint16_to_int32 = cast(dtype = gather_383_cast_uint16_to_int32_dtype_0, x = gather_383_cast_uint16)[name = string("cast_48")]; + tensor concat_417 = concat(axis = concat_417_axis_0, interleave = concat_417_interleave_0, values = (gather_382, gather_383_cast_uint16_to_int32, var_72))[name = string("concat_417")]; + tensor var_4069_cast_fp16 = transpose(perm = var_4069_perm_0, x = attn_output_85_cast_fp16)[name = string("transpose_24")]; + tensor input_169_cast_fp16 = reshape(shape = concat_417, x = var_4069_cast_fp16)[name = string("input_169_cast_fp16")]; + tensor model_model_layers_21_self_attn_o_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1419870208))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1424588864))))[name = string("model_model_layers_21_self_attn_o_proj_weight_to_fp16_quantized")]; + tensor linear_150_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_21_self_attn_o_proj_weight_to_fp16_quantized, x = input_169_cast_fp16)[name = string("linear_150_cast_fp16")]; + tensor hidden_states_649_cast_fp16 = add(x = hidden_states_629_cast_fp16, y = linear_150_cast_fp16)[name = string("hidden_states_649_cast_fp16")]; + fp16 var_78_promoted_43_to_fp16 = const()[name = string("op_78_promoted_43_to_fp16"), val = fp16(0x1p+1)]; + tensor var_4078_cast_fp16 = pow(x = hidden_states_649_cast_fp16, y = var_78_promoted_43_to_fp16)[name = string("op_4078_cast_fp16")]; + tensor variance_87_axes_0 = const()[name = string("variance_87_axes_0"), val = tensor([-1])]; + bool variance_87_keep_dims_0 = const()[name = string("variance_87_keep_dims_0"), val = bool(true)]; + tensor variance_87_cast_fp16 = reduce_mean(axes = variance_87_axes_0, keep_dims = variance_87_keep_dims_0, x = var_4078_cast_fp16)[name = string("variance_87_cast_fp16")]; + fp16 var_4081_to_fp16 = const()[name = string("op_4081_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_4082_cast_fp16 = add(x = variance_87_cast_fp16, y = var_4081_to_fp16)[name = string("op_4082_cast_fp16")]; + fp32 var_4083_epsilon_0 = const()[name = string("op_4083_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_4083_cast_fp16 = rsqrt(epsilon = var_4083_epsilon_0, x = var_4082_cast_fp16)[name = string("op_4083_cast_fp16")]; + tensor hidden_states_653_cast_fp16 = mul(x = hidden_states_649_cast_fp16, y = var_4083_cast_fp16)[name = string("hidden_states_653_cast_fp16")]; + tensor model_model_layers_21_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_21_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1425178752)))]; + tensor input_171_cast_fp16 = mul(x = model_model_layers_21_post_attention_layernorm_weight_to_fp16, y = hidden_states_653_cast_fp16)[name = string("input_171_cast_fp16")]; + tensor model_model_layers_21_mlp_gate_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1425184960))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1437767936))))[name = string("model_model_layers_21_mlp_gate_proj_weight_to_fp16_quantized")]; + tensor linear_151_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_21_mlp_gate_proj_weight_to_fp16_quantized, x = input_171_cast_fp16)[name = string("linear_151_cast_fp16")]; + tensor var_4095_cast_fp16 = silu(x = linear_151_cast_fp16)[name = string("op_4095_cast_fp16")]; + tensor model_model_layers_21_mlp_up_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1439340864))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1451923840))))[name = string("model_model_layers_21_mlp_up_proj_weight_to_fp16_quantized")]; + tensor linear_152_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_21_mlp_up_proj_weight_to_fp16_quantized, x = input_171_cast_fp16)[name = string("linear_152_cast_fp16")]; + tensor input_175_cast_fp16 = mul(x = var_4095_cast_fp16, y = linear_152_cast_fp16)[name = string("input_175_cast_fp16")]; + tensor model_model_layers_21_mlp_down_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1453496768))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1466079744))))[name = string("model_model_layers_21_mlp_down_proj_weight_to_fp16_quantized")]; + tensor linear_153_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_21_mlp_down_proj_weight_to_fp16_quantized, x = input_175_cast_fp16)[name = string("linear_153_cast_fp16")]; + tensor hidden_states_659_cast_fp16 = add(x = hidden_states_649_cast_fp16, y = linear_153_cast_fp16)[name = string("hidden_states_659_cast_fp16")]; + fp16 var_78_promoted_44_to_fp16 = const()[name = string("op_78_promoted_44_to_fp16"), val = fp16(0x1p+1)]; + tensor var_4108_cast_fp16 = pow(x = hidden_states_659_cast_fp16, y = var_78_promoted_44_to_fp16)[name = string("op_4108_cast_fp16")]; + tensor variance_89_axes_0 = const()[name = string("variance_89_axes_0"), val = tensor([-1])]; + bool variance_89_keep_dims_0 = const()[name = string("variance_89_keep_dims_0"), val = bool(true)]; + tensor variance_89_cast_fp16 = reduce_mean(axes = variance_89_axes_0, keep_dims = variance_89_keep_dims_0, x = var_4108_cast_fp16)[name = string("variance_89_cast_fp16")]; + fp16 var_4111_to_fp16 = const()[name = string("op_4111_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_4112_cast_fp16 = add(x = variance_89_cast_fp16, y = var_4111_to_fp16)[name = string("op_4112_cast_fp16")]; + fp32 var_4113_epsilon_0 = const()[name = string("op_4113_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_4113_cast_fp16 = rsqrt(epsilon = var_4113_epsilon_0, x = var_4112_cast_fp16)[name = string("op_4113_cast_fp16")]; + tensor hidden_states_663_cast_fp16 = mul(x = hidden_states_659_cast_fp16, y = var_4113_cast_fp16)[name = string("hidden_states_663_cast_fp16")]; + tensor model_model_layers_22_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_22_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1467652672)))]; + tensor hidden_states_667_cast_fp16 = mul(x = model_model_layers_22_input_layernorm_weight_to_fp16, y = hidden_states_663_cast_fp16)[name = string("hidden_states_667_cast_fp16")]; + tensor var_4124_shape_cast_fp16 = shape(x = hidden_states_667_cast_fp16)[name = string("op_4124_shape_cast_fp16")]; + int32 gather_400 = const()[name = string("gather_400"), val = int32(1)]; + int32 gather_401_axis_0 = const()[name = string("gather_401_axis_0"), val = int32(0)]; + int32 gather_401_batch_dims_0 = const()[name = string("gather_401_batch_dims_0"), val = int32(0)]; + bool gather_401_validate_indices_0 = const()[name = string("gather_401_validate_indices_0"), val = bool(false)]; + string var_4124_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_4124_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_401_to_uint16 = const()[name = string("select_401_to_uint16"), val = uint16(1)]; + tensor var_4124_shape_cast_fp16_to_uint16 = cast(dtype = var_4124_shape_cast_fp16_to_uint16_dtype_0, x = var_4124_shape_cast_fp16)[name = string("cast_47")]; + uint16 gather_401_cast_uint16 = gather(axis = gather_401_axis_0, batch_dims = gather_401_batch_dims_0, indices = select_401_to_uint16, validate_indices = gather_401_validate_indices_0, x = var_4124_shape_cast_fp16_to_uint16)[name = string("gather_401_cast_uint16")]; + string gather_401_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_401_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor model_model_layers_22_self_attn_q_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1467658880))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1472377536))))[name = string("model_model_layers_22_self_attn_q_proj_weight_to_fp16_quantized")]; + tensor linear_154_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_22_self_attn_q_proj_weight_to_fp16_quantized, x = hidden_states_667_cast_fp16)[name = string("linear_154_cast_fp16")]; + tensor model_model_layers_22_self_attn_k_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1472967424))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1474540352))))[name = string("model_model_layers_22_self_attn_k_proj_weight_to_fp16_quantized")]; + tensor linear_155_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_22_self_attn_k_proj_weight_to_fp16_quantized, x = hidden_states_667_cast_fp16)[name = string("linear_155_cast_fp16")]; + tensor model_model_layers_22_self_attn_v_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1474737024))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1476309952))))[name = string("model_model_layers_22_self_attn_v_proj_weight_to_fp16_quantized")]; + tensor linear_156_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_22_self_attn_v_proj_weight_to_fp16_quantized, x = hidden_states_667_cast_fp16)[name = string("linear_156_cast_fp16")]; + tensor concat_418x = const()[name = string("concat_418x"), val = tensor([1, -1, 24, 128])]; + tensor var_4133_cast_fp16 = reshape(shape = concat_418x, x = linear_154_cast_fp16)[name = string("op_4133_cast_fp16")]; + tensor q_45_perm_0 = const()[name = string("q_45_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_419x = const()[name = string("concat_419x"), val = tensor([1, -1, 8, 128])]; + tensor var_4136_cast_fp16 = reshape(shape = concat_419x, x = linear_155_cast_fp16)[name = string("op_4136_cast_fp16")]; + tensor k_45_perm_0 = const()[name = string("k_45_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_420x = const()[name = string("concat_420x"), val = tensor([1, -1, 8, 128])]; + tensor var_4139_cast_fp16 = reshape(shape = concat_420x, x = linear_156_cast_fp16)[name = string("op_4139_cast_fp16")]; + tensor v_state_45_perm_0 = const()[name = string("v_state_45_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor q_45_cast_fp16 = transpose(perm = q_45_perm_0, x = var_4133_cast_fp16)[name = string("transpose_23")]; + tensor var_4143_cast_fp16 = mul(x = q_45_cast_fp16, y = cos_7_cast_fp16)[name = string("op_4143_cast_fp16")]; + tensor x1_89_begin_0 = const()[name = string("x1_89_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_89_end_0 = const()[name = string("x1_89_end_0"), val = tensor([1, 24, 0, 64])]; + tensor x1_89_end_mask_0 = const()[name = string("x1_89_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_89_cast_fp16 = slice_by_index(begin = x1_89_begin_0, end = x1_89_end_0, end_mask = x1_89_end_mask_0, x = q_45_cast_fp16)[name = string("x1_89_cast_fp16")]; + tensor x2_89_begin_0 = const()[name = string("x2_89_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_89_end_0 = const()[name = string("x2_89_end_0"), val = tensor([1, 24, 0, 128])]; + tensor x2_89_end_mask_0 = const()[name = string("x2_89_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_89_cast_fp16 = slice_by_index(begin = x2_89_begin_0, end = x2_89_end_0, end_mask = x2_89_end_mask_0, x = q_45_cast_fp16)[name = string("x2_89_cast_fp16")]; + fp16 const_47_promoted_to_fp16 = const()[name = string("const_47_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_4154_cast_fp16 = mul(x = x2_89_cast_fp16, y = const_47_promoted_to_fp16)[name = string("op_4154_cast_fp16")]; + bool var_4156_interleave_0 = const()[name = string("op_4156_interleave_0"), val = bool(false)]; + tensor var_4156_cast_fp16 = concat(axis = var_72, interleave = var_4156_interleave_0, values = (var_4154_cast_fp16, x1_89_cast_fp16))[name = string("op_4156_cast_fp16")]; + tensor var_4157_cast_fp16 = mul(x = var_4156_cast_fp16, y = sin_7_cast_fp16)[name = string("op_4157_cast_fp16")]; + tensor query_states_91_cast_fp16 = add(x = var_4143_cast_fp16, y = var_4157_cast_fp16)[name = string("query_states_91_cast_fp16")]; + tensor k_45_cast_fp16 = transpose(perm = k_45_perm_0, x = var_4136_cast_fp16)[name = string("transpose_22")]; + tensor var_4159_cast_fp16 = mul(x = k_45_cast_fp16, y = cos_7_cast_fp16)[name = string("op_4159_cast_fp16")]; + tensor x1_91_begin_0 = const()[name = string("x1_91_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_91_end_0 = const()[name = string("x1_91_end_0"), val = tensor([1, 8, 0, 64])]; + tensor x1_91_end_mask_0 = const()[name = string("x1_91_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_91_cast_fp16 = slice_by_index(begin = x1_91_begin_0, end = x1_91_end_0, end_mask = x1_91_end_mask_0, x = k_45_cast_fp16)[name = string("x1_91_cast_fp16")]; + tensor x2_91_begin_0 = const()[name = string("x2_91_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_91_end_0 = const()[name = string("x2_91_end_0"), val = tensor([1, 8, 0, 128])]; + tensor x2_91_end_mask_0 = const()[name = string("x2_91_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_91_cast_fp16 = slice_by_index(begin = x2_91_begin_0, end = x2_91_end_0, end_mask = x2_91_end_mask_0, x = k_45_cast_fp16)[name = string("x2_91_cast_fp16")]; + fp16 const_48_promoted_to_fp16 = const()[name = string("const_48_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_4170_cast_fp16 = mul(x = x2_91_cast_fp16, y = const_48_promoted_to_fp16)[name = string("op_4170_cast_fp16")]; + bool var_4172_interleave_0 = const()[name = string("op_4172_interleave_0"), val = bool(false)]; + tensor var_4172_cast_fp16 = concat(axis = var_72, interleave = var_4172_interleave_0, values = (var_4170_cast_fp16, x1_91_cast_fp16))[name = string("op_4172_cast_fp16")]; + tensor var_4173_cast_fp16 = mul(x = var_4172_cast_fp16, y = sin_7_cast_fp16)[name = string("op_4173_cast_fp16")]; + tensor k_state_45_cast_fp16 = add(x = var_4159_cast_fp16, y = var_4173_cast_fp16)[name = string("k_state_45_cast_fp16")]; + tensor expand_dims_264 = const()[name = string("expand_dims_264"), val = tensor([0])]; + tensor expand_dims_265 = const()[name = string("expand_dims_265"), val = tensor([0])]; + tensor expand_dims_267 = const()[name = string("expand_dims_267"), val = tensor([0])]; + tensor concat_423_values0_0 = const()[name = string("concat_423_values0_0"), val = tensor([22])]; + int32 concat_423_axis_0 = const()[name = string("concat_423_axis_0"), val = int32(0)]; + bool concat_423_interleave_0 = const()[name = string("concat_423_interleave_0"), val = bool(false)]; + tensor concat_423 = concat(axis = concat_423_axis_0, interleave = concat_423_interleave_0, values = (concat_423_values0_0, expand_dims_264, expand_dims_265, expand_dims_2, expand_dims_267))[name = string("concat_423")]; + tensor key_cache_internal_tensor_assign_23_stride_0 = const()[name = string("key_cache_internal_tensor_assign_23_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor key_cache_internal_tensor_assign_23_begin_mask_0 = const()[name = string("key_cache_internal_tensor_assign_23_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_23_end_mask_0 = const()[name = string("key_cache_internal_tensor_assign_23_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor key_cache_internal_tensor_assign_23_squeeze_mask_0 = const()[name = string("key_cache_internal_tensor_assign_23_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_23_cast_fp16 = slice_update(begin = concat_423, begin_mask = key_cache_internal_tensor_assign_23_begin_mask_0, end = concat_6, end_mask = key_cache_internal_tensor_assign_23_end_mask_0, squeeze_mask = key_cache_internal_tensor_assign_23_squeeze_mask_0, stride = key_cache_internal_tensor_assign_23_stride_0, update = k_state_45_cast_fp16, x = coreml_update_state_98)[name = string("key_cache_internal_tensor_assign_23_cast_fp16")]; + write_state(data = key_cache_internal_tensor_assign_23_cast_fp16, input = key_cache)[name = string("coreml_update_state_100_write_state")]; + tensor coreml_update_state_100 = read_state(input = key_cache)[name = string("coreml_update_state_100")]; + tensor value_cache_internal_tensor_assign_23_stride_0 = const()[name = string("value_cache_internal_tensor_assign_23_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor value_cache_internal_tensor_assign_23_begin_mask_0 = const()[name = string("value_cache_internal_tensor_assign_23_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor value_cache_internal_tensor_assign_23_end_mask_0 = const()[name = string("value_cache_internal_tensor_assign_23_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor value_cache_internal_tensor_assign_23_squeeze_mask_0 = const()[name = string("value_cache_internal_tensor_assign_23_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor v_state_45_cast_fp16 = transpose(perm = v_state_45_perm_0, x = var_4139_cast_fp16)[name = string("transpose_21")]; + tensor value_cache_internal_tensor_assign_23_cast_fp16 = slice_update(begin = concat_423, begin_mask = value_cache_internal_tensor_assign_23_begin_mask_0, end = concat_6, end_mask = value_cache_internal_tensor_assign_23_end_mask_0, squeeze_mask = value_cache_internal_tensor_assign_23_squeeze_mask_0, stride = value_cache_internal_tensor_assign_23_stride_0, update = v_state_45_cast_fp16, x = coreml_update_state_99)[name = string("value_cache_internal_tensor_assign_23_cast_fp16")]; + write_state(data = value_cache_internal_tensor_assign_23_cast_fp16, input = value_cache)[name = string("coreml_update_state_101_write_state")]; + tensor coreml_update_state_101 = read_state(input = value_cache)[name = string("coreml_update_state_101")]; + tensor var_4196_begin_0 = const()[name = string("op_4196_begin_0"), val = tensor([22, 0, 0, 0, 0])]; + tensor var_4196_end_0 = const()[name = string("op_4196_end_0"), val = tensor([23, 1, 8, 2048, 128])]; + tensor var_4196_end_mask_0 = const()[name = string("op_4196_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_4196_squeeze_mask_0 = const()[name = string("op_4196_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_4196_cast_fp16 = slice_by_index(begin = var_4196_begin_0, end = var_4196_end_0, end_mask = var_4196_end_mask_0, squeeze_mask = var_4196_squeeze_mask_0, x = coreml_update_state_100)[name = string("op_4196_cast_fp16")]; + tensor var_4199_begin_0 = const()[name = string("op_4199_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_4199_end_mask_0 = const()[name = string("op_4199_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_4199_cast_fp16 = slice_by_index(begin = var_4199_begin_0, end = concat_11, end_mask = var_4199_end_mask_0, x = var_4196_cast_fp16)[name = string("op_4199_cast_fp16")]; + tensor var_4201_begin_0 = const()[name = string("op_4201_begin_0"), val = tensor([22, 0, 0, 0, 0])]; + tensor var_4201_end_0 = const()[name = string("op_4201_end_0"), val = tensor([23, 1, 8, 2048, 128])]; + tensor var_4201_end_mask_0 = const()[name = string("op_4201_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_4201_squeeze_mask_0 = const()[name = string("op_4201_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_4201_cast_fp16 = slice_by_index(begin = var_4201_begin_0, end = var_4201_end_0, end_mask = var_4201_end_mask_0, squeeze_mask = var_4201_squeeze_mask_0, x = coreml_update_state_101)[name = string("op_4201_cast_fp16")]; + tensor var_4204_begin_0 = const()[name = string("op_4204_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_4204_end_mask_0 = const()[name = string("op_4204_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_4204_cast_fp16 = slice_by_index(begin = var_4204_begin_0, end = concat_11, end_mask = var_4204_end_mask_0, x = var_4201_cast_fp16)[name = string("op_4204_cast_fp16")]; + tensor var_4206_shape_cast_fp16 = shape(x = var_4199_cast_fp16)[name = string("op_4206_shape_cast_fp16")]; + int32 gather_409 = const()[name = string("gather_409"), val = int32(1)]; + int32 gather_410 = const()[name = string("gather_410"), val = int32(8)]; + int32 gather_411_axis_0 = const()[name = string("gather_411_axis_0"), val = int32(0)]; + int32 gather_411_batch_dims_0 = const()[name = string("gather_411_batch_dims_0"), val = int32(0)]; + bool gather_411_validate_indices_0 = const()[name = string("gather_411_validate_indices_0"), val = bool(false)]; + string var_4206_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_4206_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_411_to_uint16 = const()[name = string("select_411_to_uint16"), val = uint16(2)]; + tensor var_4206_shape_cast_fp16_to_uint16 = cast(dtype = var_4206_shape_cast_fp16_to_uint16_dtype_0, x = var_4206_shape_cast_fp16)[name = string("cast_46")]; + uint16 gather_411_cast_uint16 = gather(axis = gather_411_axis_0, batch_dims = gather_411_batch_dims_0, indices = select_411_to_uint16, validate_indices = gather_411_validate_indices_0, x = var_4206_shape_cast_fp16_to_uint16)[name = string("gather_411_cast_uint16")]; + string gather_411_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_411_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_412 = const()[name = string("gather_412"), val = int32(128)]; + tensor var_4213_axes_0 = const()[name = string("op_4213_axes_0"), val = tensor([2])]; + tensor var_4213_cast_fp16 = expand_dims(axes = var_4213_axes_0, x = var_4199_cast_fp16)[name = string("op_4213_cast_fp16")]; + tensor shape_457_cast_fp16 = shape(x = var_4213_cast_fp16)[name = string("shape_457_cast_fp16")]; + int32 concat_431_axis_0 = const()[name = string("concat_431_axis_0"), val = int32(0)]; + bool concat_431_interleave_0 = const()[name = string("concat_431_interleave_0"), val = bool(false)]; + int32 gather_411_cast_uint16_to_int32 = cast(dtype = gather_411_cast_uint16_to_int32_dtype_0, x = gather_411_cast_uint16)[name = string("cast_45")]; + tensor concat_431 = concat(axis = concat_431_axis_0, interleave = concat_431_interleave_0, values = (gather_409, gather_410, var_81, gather_411_cast_uint16_to_int32, gather_412))[name = string("concat_431")]; + tensor real_div_44 = real_div(x = concat_431, y = shape_457_cast_fp16)[name = string("real_div_44")]; + tensor hidden_states_671_cast_fp16 = tile(reps = real_div_44, x = var_4213_cast_fp16)[name = string("hidden_states_671_cast_fp16")]; + tensor concat_432x = const()[name = string("concat_432x"), val = tensor([1, 24, -1, 128])]; + tensor key_states_91_cast_fp16 = reshape(shape = concat_432x, x = hidden_states_671_cast_fp16)[name = string("key_states_91_cast_fp16")]; + tensor var_4223_shape_cast_fp16 = shape(x = var_4204_cast_fp16)[name = string("op_4223_shape_cast_fp16")]; + int32 gather_413 = const()[name = string("gather_413"), val = int32(1)]; + int32 gather_414 = const()[name = string("gather_414"), val = int32(8)]; + int32 gather_415_axis_0 = const()[name = string("gather_415_axis_0"), val = int32(0)]; + int32 gather_415_batch_dims_0 = const()[name = string("gather_415_batch_dims_0"), val = int32(0)]; + bool gather_415_validate_indices_0 = const()[name = string("gather_415_validate_indices_0"), val = bool(false)]; + string var_4223_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_4223_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_415_to_uint16 = const()[name = string("select_415_to_uint16"), val = uint16(2)]; + tensor var_4223_shape_cast_fp16_to_uint16 = cast(dtype = var_4223_shape_cast_fp16_to_uint16_dtype_0, x = var_4223_shape_cast_fp16)[name = string("cast_44")]; + uint16 gather_415_cast_uint16 = gather(axis = gather_415_axis_0, batch_dims = gather_415_batch_dims_0, indices = select_415_to_uint16, validate_indices = gather_415_validate_indices_0, x = var_4223_shape_cast_fp16_to_uint16)[name = string("gather_415_cast_uint16")]; + string gather_415_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_415_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_416 = const()[name = string("gather_416"), val = int32(128)]; + tensor var_4230_axes_0 = const()[name = string("op_4230_axes_0"), val = tensor([2])]; + tensor var_4230_cast_fp16 = expand_dims(axes = var_4230_axes_0, x = var_4204_cast_fp16)[name = string("op_4230_cast_fp16")]; + tensor shape_462_cast_fp16 = shape(x = var_4230_cast_fp16)[name = string("shape_462_cast_fp16")]; + int32 concat_433_axis_0 = const()[name = string("concat_433_axis_0"), val = int32(0)]; + bool concat_433_interleave_0 = const()[name = string("concat_433_interleave_0"), val = bool(false)]; + int32 gather_415_cast_uint16_to_int32 = cast(dtype = gather_415_cast_uint16_to_int32_dtype_0, x = gather_415_cast_uint16)[name = string("cast_43")]; + tensor concat_433 = concat(axis = concat_433_axis_0, interleave = concat_433_interleave_0, values = (gather_413, gather_414, var_81, gather_415_cast_uint16_to_int32, gather_416))[name = string("concat_433")]; + tensor real_div_45 = real_div(x = concat_433, y = shape_462_cast_fp16)[name = string("real_div_45")]; + tensor hidden_states_675_cast_fp16 = tile(reps = real_div_45, x = var_4230_cast_fp16)[name = string("hidden_states_675_cast_fp16")]; + tensor concat_434x = const()[name = string("concat_434x"), val = tensor([1, 24, -1, 128])]; + tensor value_states_91_cast_fp16 = reshape(shape = concat_434x, x = hidden_states_675_cast_fp16)[name = string("value_states_91_cast_fp16")]; + tensor var_4240_shape_cast_fp16 = shape(x = key_states_91_cast_fp16)[name = string("op_4240_shape_cast_fp16")]; + int32 gather_417_axis_0 = const()[name = string("gather_417_axis_0"), val = int32(0)]; + int32 gather_417_batch_dims_0 = const()[name = string("gather_417_batch_dims_0"), val = int32(0)]; + bool gather_417_validate_indices_0 = const()[name = string("gather_417_validate_indices_0"), val = bool(false)]; + string var_4240_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_4240_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_417_to_uint16 = const()[name = string("select_417_to_uint16"), val = uint16(2)]; + tensor var_4240_shape_cast_fp16_to_uint16 = cast(dtype = var_4240_shape_cast_fp16_to_uint16_dtype_0, x = var_4240_shape_cast_fp16)[name = string("cast_42")]; + uint16 gather_417_cast_uint16 = gather(axis = gather_417_axis_0, batch_dims = gather_417_batch_dims_0, indices = select_417_to_uint16, validate_indices = gather_417_validate_indices_0, x = var_4240_shape_cast_fp16_to_uint16)[name = string("gather_417_cast_uint16")]; + string gather_417_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_417_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 concat_435_values0_0 = const()[name = string("concat_435_values0_0"), val = int32(1)]; + int32 concat_435_values1_0 = const()[name = string("concat_435_values1_0"), val = int32(1)]; + int32 concat_435_values2_0 = const()[name = string("concat_435_values2_0"), val = int32(0)]; + int32 concat_435_axis_0 = const()[name = string("concat_435_axis_0"), val = int32(0)]; + bool concat_435_interleave_0 = const()[name = string("concat_435_interleave_0"), val = bool(false)]; + int32 gather_417_cast_uint16_to_int32 = cast(dtype = gather_417_cast_uint16_to_int32_dtype_0, x = gather_417_cast_uint16)[name = string("cast_41")]; + tensor concat_435 = concat(axis = concat_435_axis_0, interleave = concat_435_interleave_0, values = (concat_435_values0_0, concat_435_values1_0, concat_435_values2_0, gather_417_cast_uint16_to_int32))[name = string("concat_435")]; + tensor causal_mask_47_begin_0 = const()[name = string("causal_mask_47_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor causal_mask_47_end_mask_0 = const()[name = string("causal_mask_47_end_mask_0"), val = tensor([true, true, true, false])]; + tensor causal_mask_47_cast_fp16 = slice_by_index(begin = causal_mask_47_begin_0, end = concat_435, end_mask = causal_mask_47_end_mask_0, x = causal_mask)[name = string("causal_mask_47_cast_fp16")]; + tensor attn_output_89_cast_fp16 = scaled_dot_product_attention(attn_mask = causal_mask_47_cast_fp16, key = key_states_91_cast_fp16, query = query_states_91_cast_fp16, value = value_states_91_cast_fp16)[name = string("attn_output_89_cast_fp16")]; + tensor var_4246_perm_0 = const()[name = string("op_4246_perm_0"), val = tensor([0, 2, 1, 3])]; + int32 concat_436_axis_0 = const()[name = string("concat_436_axis_0"), val = int32(0)]; + bool concat_436_interleave_0 = const()[name = string("concat_436_interleave_0"), val = bool(false)]; + int32 gather_401_cast_uint16_to_int32 = cast(dtype = gather_401_cast_uint16_to_int32_dtype_0, x = gather_401_cast_uint16)[name = string("cast_40")]; + tensor concat_436 = concat(axis = concat_436_axis_0, interleave = concat_436_interleave_0, values = (gather_400, gather_401_cast_uint16_to_int32, var_72))[name = string("concat_436")]; + tensor var_4246_cast_fp16 = transpose(perm = var_4246_perm_0, x = attn_output_89_cast_fp16)[name = string("transpose_20")]; + tensor input_177_cast_fp16 = reshape(shape = concat_436, x = var_4246_cast_fp16)[name = string("input_177_cast_fp16")]; + tensor model_model_layers_22_self_attn_o_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1476506624))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1481225280))))[name = string("model_model_layers_22_self_attn_o_proj_weight_to_fp16_quantized")]; + tensor linear_157_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_22_self_attn_o_proj_weight_to_fp16_quantized, x = input_177_cast_fp16)[name = string("linear_157_cast_fp16")]; + tensor hidden_states_679_cast_fp16 = add(x = hidden_states_659_cast_fp16, y = linear_157_cast_fp16)[name = string("hidden_states_679_cast_fp16")]; + fp16 var_78_promoted_45_to_fp16 = const()[name = string("op_78_promoted_45_to_fp16"), val = fp16(0x1p+1)]; + tensor var_4255_cast_fp16 = pow(x = hidden_states_679_cast_fp16, y = var_78_promoted_45_to_fp16)[name = string("op_4255_cast_fp16")]; + tensor variance_91_axes_0 = const()[name = string("variance_91_axes_0"), val = tensor([-1])]; + bool variance_91_keep_dims_0 = const()[name = string("variance_91_keep_dims_0"), val = bool(true)]; + tensor variance_91_cast_fp16 = reduce_mean(axes = variance_91_axes_0, keep_dims = variance_91_keep_dims_0, x = var_4255_cast_fp16)[name = string("variance_91_cast_fp16")]; + fp16 var_4258_to_fp16 = const()[name = string("op_4258_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_4259_cast_fp16 = add(x = variance_91_cast_fp16, y = var_4258_to_fp16)[name = string("op_4259_cast_fp16")]; + fp32 var_4260_epsilon_0 = const()[name = string("op_4260_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_4260_cast_fp16 = rsqrt(epsilon = var_4260_epsilon_0, x = var_4259_cast_fp16)[name = string("op_4260_cast_fp16")]; + tensor hidden_states_683_cast_fp16 = mul(x = hidden_states_679_cast_fp16, y = var_4260_cast_fp16)[name = string("hidden_states_683_cast_fp16")]; + tensor model_model_layers_22_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_22_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1481815168)))]; + tensor input_179_cast_fp16 = mul(x = model_model_layers_22_post_attention_layernorm_weight_to_fp16, y = hidden_states_683_cast_fp16)[name = string("input_179_cast_fp16")]; + tensor model_model_layers_22_mlp_gate_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1481821376))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1494404352))))[name = string("model_model_layers_22_mlp_gate_proj_weight_to_fp16_quantized")]; + tensor linear_158_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_22_mlp_gate_proj_weight_to_fp16_quantized, x = input_179_cast_fp16)[name = string("linear_158_cast_fp16")]; + tensor var_4272_cast_fp16 = silu(x = linear_158_cast_fp16)[name = string("op_4272_cast_fp16")]; + tensor model_model_layers_22_mlp_up_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1495977280))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1508560256))))[name = string("model_model_layers_22_mlp_up_proj_weight_to_fp16_quantized")]; + tensor linear_159_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_22_mlp_up_proj_weight_to_fp16_quantized, x = input_179_cast_fp16)[name = string("linear_159_cast_fp16")]; + tensor input_183_cast_fp16 = mul(x = var_4272_cast_fp16, y = linear_159_cast_fp16)[name = string("input_183_cast_fp16")]; + tensor model_model_layers_22_mlp_down_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1510133184))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1522716160))))[name = string("model_model_layers_22_mlp_down_proj_weight_to_fp16_quantized")]; + tensor linear_160_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_22_mlp_down_proj_weight_to_fp16_quantized, x = input_183_cast_fp16)[name = string("linear_160_cast_fp16")]; + tensor hidden_states_689_cast_fp16 = add(x = hidden_states_679_cast_fp16, y = linear_160_cast_fp16)[name = string("hidden_states_689_cast_fp16")]; + fp16 var_78_promoted_46_to_fp16 = const()[name = string("op_78_promoted_46_to_fp16"), val = fp16(0x1p+1)]; + tensor var_4285_cast_fp16 = pow(x = hidden_states_689_cast_fp16, y = var_78_promoted_46_to_fp16)[name = string("op_4285_cast_fp16")]; + tensor variance_93_axes_0 = const()[name = string("variance_93_axes_0"), val = tensor([-1])]; + bool variance_93_keep_dims_0 = const()[name = string("variance_93_keep_dims_0"), val = bool(true)]; + tensor variance_93_cast_fp16 = reduce_mean(axes = variance_93_axes_0, keep_dims = variance_93_keep_dims_0, x = var_4285_cast_fp16)[name = string("variance_93_cast_fp16")]; + fp16 var_4288_to_fp16 = const()[name = string("op_4288_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_4289_cast_fp16 = add(x = variance_93_cast_fp16, y = var_4288_to_fp16)[name = string("op_4289_cast_fp16")]; + fp32 var_4290_epsilon_0 = const()[name = string("op_4290_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_4290_cast_fp16 = rsqrt(epsilon = var_4290_epsilon_0, x = var_4289_cast_fp16)[name = string("op_4290_cast_fp16")]; + tensor hidden_states_693_cast_fp16 = mul(x = hidden_states_689_cast_fp16, y = var_4290_cast_fp16)[name = string("hidden_states_693_cast_fp16")]; + tensor model_model_layers_23_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_23_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1524289088)))]; + tensor hidden_states_697_cast_fp16 = mul(x = model_model_layers_23_input_layernorm_weight_to_fp16, y = hidden_states_693_cast_fp16)[name = string("hidden_states_697_cast_fp16")]; + tensor var_4301_shape_cast_fp16 = shape(x = hidden_states_697_cast_fp16)[name = string("op_4301_shape_cast_fp16")]; + int32 gather_418 = const()[name = string("gather_418"), val = int32(1)]; + int32 gather_419_axis_0 = const()[name = string("gather_419_axis_0"), val = int32(0)]; + int32 gather_419_batch_dims_0 = const()[name = string("gather_419_batch_dims_0"), val = int32(0)]; + bool gather_419_validate_indices_0 = const()[name = string("gather_419_validate_indices_0"), val = bool(false)]; + string var_4301_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_4301_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_419_to_uint16 = const()[name = string("select_419_to_uint16"), val = uint16(1)]; + tensor var_4301_shape_cast_fp16_to_uint16 = cast(dtype = var_4301_shape_cast_fp16_to_uint16_dtype_0, x = var_4301_shape_cast_fp16)[name = string("cast_39")]; + uint16 gather_419_cast_uint16 = gather(axis = gather_419_axis_0, batch_dims = gather_419_batch_dims_0, indices = select_419_to_uint16, validate_indices = gather_419_validate_indices_0, x = var_4301_shape_cast_fp16_to_uint16)[name = string("gather_419_cast_uint16")]; + string gather_419_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_419_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor model_model_layers_23_self_attn_q_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1524295296))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1529013952))))[name = string("model_model_layers_23_self_attn_q_proj_weight_to_fp16_quantized")]; + tensor linear_161_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_23_self_attn_q_proj_weight_to_fp16_quantized, x = hidden_states_697_cast_fp16)[name = string("linear_161_cast_fp16")]; + tensor model_model_layers_23_self_attn_k_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1529603840))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1531176768))))[name = string("model_model_layers_23_self_attn_k_proj_weight_to_fp16_quantized")]; + tensor linear_162_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_23_self_attn_k_proj_weight_to_fp16_quantized, x = hidden_states_697_cast_fp16)[name = string("linear_162_cast_fp16")]; + tensor model_model_layers_23_self_attn_v_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1531373440))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1532946368))))[name = string("model_model_layers_23_self_attn_v_proj_weight_to_fp16_quantized")]; + tensor linear_163_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_23_self_attn_v_proj_weight_to_fp16_quantized, x = hidden_states_697_cast_fp16)[name = string("linear_163_cast_fp16")]; + tensor concat_437x = const()[name = string("concat_437x"), val = tensor([1, -1, 24, 128])]; + tensor var_4310_cast_fp16 = reshape(shape = concat_437x, x = linear_161_cast_fp16)[name = string("op_4310_cast_fp16")]; + tensor q_47_perm_0 = const()[name = string("q_47_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_438x = const()[name = string("concat_438x"), val = tensor([1, -1, 8, 128])]; + tensor var_4313_cast_fp16 = reshape(shape = concat_438x, x = linear_162_cast_fp16)[name = string("op_4313_cast_fp16")]; + tensor k_47_perm_0 = const()[name = string("k_47_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_439x = const()[name = string("concat_439x"), val = tensor([1, -1, 8, 128])]; + tensor var_4316_cast_fp16 = reshape(shape = concat_439x, x = linear_163_cast_fp16)[name = string("op_4316_cast_fp16")]; + tensor v_state_47_perm_0 = const()[name = string("v_state_47_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor q_47_cast_fp16 = transpose(perm = q_47_perm_0, x = var_4310_cast_fp16)[name = string("transpose_19")]; + tensor var_4320_cast_fp16 = mul(x = q_47_cast_fp16, y = cos_7_cast_fp16)[name = string("op_4320_cast_fp16")]; + tensor x1_93_begin_0 = const()[name = string("x1_93_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_93_end_0 = const()[name = string("x1_93_end_0"), val = tensor([1, 24, 0, 64])]; + tensor x1_93_end_mask_0 = const()[name = string("x1_93_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_93_cast_fp16 = slice_by_index(begin = x1_93_begin_0, end = x1_93_end_0, end_mask = x1_93_end_mask_0, x = q_47_cast_fp16)[name = string("x1_93_cast_fp16")]; + tensor x2_93_begin_0 = const()[name = string("x2_93_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_93_end_0 = const()[name = string("x2_93_end_0"), val = tensor([1, 24, 0, 128])]; + tensor x2_93_end_mask_0 = const()[name = string("x2_93_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_93_cast_fp16 = slice_by_index(begin = x2_93_begin_0, end = x2_93_end_0, end_mask = x2_93_end_mask_0, x = q_47_cast_fp16)[name = string("x2_93_cast_fp16")]; + fp16 const_49_promoted_to_fp16 = const()[name = string("const_49_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_4331_cast_fp16 = mul(x = x2_93_cast_fp16, y = const_49_promoted_to_fp16)[name = string("op_4331_cast_fp16")]; + bool var_4333_interleave_0 = const()[name = string("op_4333_interleave_0"), val = bool(false)]; + tensor var_4333_cast_fp16 = concat(axis = var_72, interleave = var_4333_interleave_0, values = (var_4331_cast_fp16, x1_93_cast_fp16))[name = string("op_4333_cast_fp16")]; + tensor var_4334_cast_fp16 = mul(x = var_4333_cast_fp16, y = sin_7_cast_fp16)[name = string("op_4334_cast_fp16")]; + tensor query_states_95_cast_fp16 = add(x = var_4320_cast_fp16, y = var_4334_cast_fp16)[name = string("query_states_95_cast_fp16")]; + tensor k_47_cast_fp16 = transpose(perm = k_47_perm_0, x = var_4313_cast_fp16)[name = string("transpose_18")]; + tensor var_4336_cast_fp16 = mul(x = k_47_cast_fp16, y = cos_7_cast_fp16)[name = string("op_4336_cast_fp16")]; + tensor x1_95_begin_0 = const()[name = string("x1_95_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_95_end_0 = const()[name = string("x1_95_end_0"), val = tensor([1, 8, 0, 64])]; + tensor x1_95_end_mask_0 = const()[name = string("x1_95_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_95_cast_fp16 = slice_by_index(begin = x1_95_begin_0, end = x1_95_end_0, end_mask = x1_95_end_mask_0, x = k_47_cast_fp16)[name = string("x1_95_cast_fp16")]; + tensor x2_95_begin_0 = const()[name = string("x2_95_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_95_end_0 = const()[name = string("x2_95_end_0"), val = tensor([1, 8, 0, 128])]; + tensor x2_95_end_mask_0 = const()[name = string("x2_95_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_95_cast_fp16 = slice_by_index(begin = x2_95_begin_0, end = x2_95_end_0, end_mask = x2_95_end_mask_0, x = k_47_cast_fp16)[name = string("x2_95_cast_fp16")]; + fp16 const_50_promoted_to_fp16 = const()[name = string("const_50_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_4347_cast_fp16 = mul(x = x2_95_cast_fp16, y = const_50_promoted_to_fp16)[name = string("op_4347_cast_fp16")]; + bool var_4349_interleave_0 = const()[name = string("op_4349_interleave_0"), val = bool(false)]; + tensor var_4349_cast_fp16 = concat(axis = var_72, interleave = var_4349_interleave_0, values = (var_4347_cast_fp16, x1_95_cast_fp16))[name = string("op_4349_cast_fp16")]; + tensor var_4350_cast_fp16 = mul(x = var_4349_cast_fp16, y = sin_7_cast_fp16)[name = string("op_4350_cast_fp16")]; + tensor k_state_47_cast_fp16 = add(x = var_4336_cast_fp16, y = var_4350_cast_fp16)[name = string("k_state_47_cast_fp16")]; + tensor expand_dims_276 = const()[name = string("expand_dims_276"), val = tensor([0])]; + tensor expand_dims_277 = const()[name = string("expand_dims_277"), val = tensor([0])]; + tensor expand_dims_279 = const()[name = string("expand_dims_279"), val = tensor([0])]; + tensor concat_442_values0_0 = const()[name = string("concat_442_values0_0"), val = tensor([23])]; + int32 concat_442_axis_0 = const()[name = string("concat_442_axis_0"), val = int32(0)]; + bool concat_442_interleave_0 = const()[name = string("concat_442_interleave_0"), val = bool(false)]; + tensor concat_442 = concat(axis = concat_442_axis_0, interleave = concat_442_interleave_0, values = (concat_442_values0_0, expand_dims_276, expand_dims_277, expand_dims_2, expand_dims_279))[name = string("concat_442")]; + tensor key_cache_internal_tensor_assign_24_stride_0 = const()[name = string("key_cache_internal_tensor_assign_24_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor key_cache_internal_tensor_assign_24_begin_mask_0 = const()[name = string("key_cache_internal_tensor_assign_24_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_24_end_mask_0 = const()[name = string("key_cache_internal_tensor_assign_24_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor key_cache_internal_tensor_assign_24_squeeze_mask_0 = const()[name = string("key_cache_internal_tensor_assign_24_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_24_cast_fp16 = slice_update(begin = concat_442, begin_mask = key_cache_internal_tensor_assign_24_begin_mask_0, end = concat_6, end_mask = key_cache_internal_tensor_assign_24_end_mask_0, squeeze_mask = key_cache_internal_tensor_assign_24_squeeze_mask_0, stride = key_cache_internal_tensor_assign_24_stride_0, update = k_state_47_cast_fp16, x = coreml_update_state_100)[name = string("key_cache_internal_tensor_assign_24_cast_fp16")]; + write_state(data = key_cache_internal_tensor_assign_24_cast_fp16, input = key_cache)[name = string("coreml_update_state_102_write_state")]; + tensor coreml_update_state_102 = read_state(input = key_cache)[name = string("coreml_update_state_102")]; + tensor value_cache_internal_tensor_assign_24_stride_0 = const()[name = string("value_cache_internal_tensor_assign_24_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor value_cache_internal_tensor_assign_24_begin_mask_0 = const()[name = string("value_cache_internal_tensor_assign_24_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor value_cache_internal_tensor_assign_24_end_mask_0 = const()[name = string("value_cache_internal_tensor_assign_24_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor value_cache_internal_tensor_assign_24_squeeze_mask_0 = const()[name = string("value_cache_internal_tensor_assign_24_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor v_state_47_cast_fp16 = transpose(perm = v_state_47_perm_0, x = var_4316_cast_fp16)[name = string("transpose_17")]; + tensor value_cache_internal_tensor_assign_24_cast_fp16 = slice_update(begin = concat_442, begin_mask = value_cache_internal_tensor_assign_24_begin_mask_0, end = concat_6, end_mask = value_cache_internal_tensor_assign_24_end_mask_0, squeeze_mask = value_cache_internal_tensor_assign_24_squeeze_mask_0, stride = value_cache_internal_tensor_assign_24_stride_0, update = v_state_47_cast_fp16, x = coreml_update_state_101)[name = string("value_cache_internal_tensor_assign_24_cast_fp16")]; + write_state(data = value_cache_internal_tensor_assign_24_cast_fp16, input = value_cache)[name = string("coreml_update_state_103_write_state")]; + tensor coreml_update_state_103 = read_state(input = value_cache)[name = string("coreml_update_state_103")]; + tensor var_4373_begin_0 = const()[name = string("op_4373_begin_0"), val = tensor([23, 0, 0, 0, 0])]; + tensor var_4373_end_0 = const()[name = string("op_4373_end_0"), val = tensor([24, 1, 8, 2048, 128])]; + tensor var_4373_end_mask_0 = const()[name = string("op_4373_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_4373_squeeze_mask_0 = const()[name = string("op_4373_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_4373_cast_fp16 = slice_by_index(begin = var_4373_begin_0, end = var_4373_end_0, end_mask = var_4373_end_mask_0, squeeze_mask = var_4373_squeeze_mask_0, x = coreml_update_state_102)[name = string("op_4373_cast_fp16")]; + tensor var_4376_begin_0 = const()[name = string("op_4376_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_4376_end_mask_0 = const()[name = string("op_4376_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_4376_cast_fp16 = slice_by_index(begin = var_4376_begin_0, end = concat_11, end_mask = var_4376_end_mask_0, x = var_4373_cast_fp16)[name = string("op_4376_cast_fp16")]; + tensor var_4378_begin_0 = const()[name = string("op_4378_begin_0"), val = tensor([23, 0, 0, 0, 0])]; + tensor var_4378_end_0 = const()[name = string("op_4378_end_0"), val = tensor([24, 1, 8, 2048, 128])]; + tensor var_4378_end_mask_0 = const()[name = string("op_4378_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_4378_squeeze_mask_0 = const()[name = string("op_4378_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_4378_cast_fp16 = slice_by_index(begin = var_4378_begin_0, end = var_4378_end_0, end_mask = var_4378_end_mask_0, squeeze_mask = var_4378_squeeze_mask_0, x = coreml_update_state_103)[name = string("op_4378_cast_fp16")]; + tensor var_4381_begin_0 = const()[name = string("op_4381_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_4381_end_mask_0 = const()[name = string("op_4381_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_4381_cast_fp16 = slice_by_index(begin = var_4381_begin_0, end = concat_11, end_mask = var_4381_end_mask_0, x = var_4378_cast_fp16)[name = string("op_4381_cast_fp16")]; + tensor var_4383_shape_cast_fp16 = shape(x = var_4376_cast_fp16)[name = string("op_4383_shape_cast_fp16")]; + int32 gather_427 = const()[name = string("gather_427"), val = int32(1)]; + int32 gather_428 = const()[name = string("gather_428"), val = int32(8)]; + int32 gather_429_axis_0 = const()[name = string("gather_429_axis_0"), val = int32(0)]; + int32 gather_429_batch_dims_0 = const()[name = string("gather_429_batch_dims_0"), val = int32(0)]; + bool gather_429_validate_indices_0 = const()[name = string("gather_429_validate_indices_0"), val = bool(false)]; + string var_4383_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_4383_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_429_to_uint16 = const()[name = string("select_429_to_uint16"), val = uint16(2)]; + tensor var_4383_shape_cast_fp16_to_uint16 = cast(dtype = var_4383_shape_cast_fp16_to_uint16_dtype_0, x = var_4383_shape_cast_fp16)[name = string("cast_38")]; + uint16 gather_429_cast_uint16 = gather(axis = gather_429_axis_0, batch_dims = gather_429_batch_dims_0, indices = select_429_to_uint16, validate_indices = gather_429_validate_indices_0, x = var_4383_shape_cast_fp16_to_uint16)[name = string("gather_429_cast_uint16")]; + string gather_429_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_429_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_430 = const()[name = string("gather_430"), val = int32(128)]; + tensor var_4390_axes_0 = const()[name = string("op_4390_axes_0"), val = tensor([2])]; + tensor var_4390_cast_fp16 = expand_dims(axes = var_4390_axes_0, x = var_4376_cast_fp16)[name = string("op_4390_cast_fp16")]; + tensor shape_477_cast_fp16 = shape(x = var_4390_cast_fp16)[name = string("shape_477_cast_fp16")]; + int32 concat_450_axis_0 = const()[name = string("concat_450_axis_0"), val = int32(0)]; + bool concat_450_interleave_0 = const()[name = string("concat_450_interleave_0"), val = bool(false)]; + int32 gather_429_cast_uint16_to_int32 = cast(dtype = gather_429_cast_uint16_to_int32_dtype_0, x = gather_429_cast_uint16)[name = string("cast_37")]; + tensor concat_450 = concat(axis = concat_450_axis_0, interleave = concat_450_interleave_0, values = (gather_427, gather_428, var_81, gather_429_cast_uint16_to_int32, gather_430))[name = string("concat_450")]; + tensor real_div_46 = real_div(x = concat_450, y = shape_477_cast_fp16)[name = string("real_div_46")]; + tensor hidden_states_701_cast_fp16 = tile(reps = real_div_46, x = var_4390_cast_fp16)[name = string("hidden_states_701_cast_fp16")]; + tensor concat_451x = const()[name = string("concat_451x"), val = tensor([1, 24, -1, 128])]; + tensor key_states_95_cast_fp16 = reshape(shape = concat_451x, x = hidden_states_701_cast_fp16)[name = string("key_states_95_cast_fp16")]; + tensor var_4400_shape_cast_fp16 = shape(x = var_4381_cast_fp16)[name = string("op_4400_shape_cast_fp16")]; + int32 gather_431 = const()[name = string("gather_431"), val = int32(1)]; + int32 gather_432 = const()[name = string("gather_432"), val = int32(8)]; + int32 gather_433_axis_0 = const()[name = string("gather_433_axis_0"), val = int32(0)]; + int32 gather_433_batch_dims_0 = const()[name = string("gather_433_batch_dims_0"), val = int32(0)]; + bool gather_433_validate_indices_0 = const()[name = string("gather_433_validate_indices_0"), val = bool(false)]; + string var_4400_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_4400_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_433_to_uint16 = const()[name = string("select_433_to_uint16"), val = uint16(2)]; + tensor var_4400_shape_cast_fp16_to_uint16 = cast(dtype = var_4400_shape_cast_fp16_to_uint16_dtype_0, x = var_4400_shape_cast_fp16)[name = string("cast_36")]; + uint16 gather_433_cast_uint16 = gather(axis = gather_433_axis_0, batch_dims = gather_433_batch_dims_0, indices = select_433_to_uint16, validate_indices = gather_433_validate_indices_0, x = var_4400_shape_cast_fp16_to_uint16)[name = string("gather_433_cast_uint16")]; + string gather_433_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_433_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_434 = const()[name = string("gather_434"), val = int32(128)]; + tensor var_4407_axes_0 = const()[name = string("op_4407_axes_0"), val = tensor([2])]; + tensor var_4407_cast_fp16 = expand_dims(axes = var_4407_axes_0, x = var_4381_cast_fp16)[name = string("op_4407_cast_fp16")]; + tensor shape_482_cast_fp16 = shape(x = var_4407_cast_fp16)[name = string("shape_482_cast_fp16")]; + int32 concat_452_axis_0 = const()[name = string("concat_452_axis_0"), val = int32(0)]; + bool concat_452_interleave_0 = const()[name = string("concat_452_interleave_0"), val = bool(false)]; + int32 gather_433_cast_uint16_to_int32 = cast(dtype = gather_433_cast_uint16_to_int32_dtype_0, x = gather_433_cast_uint16)[name = string("cast_35")]; + tensor concat_452 = concat(axis = concat_452_axis_0, interleave = concat_452_interleave_0, values = (gather_431, gather_432, var_81, gather_433_cast_uint16_to_int32, gather_434))[name = string("concat_452")]; + tensor real_div_47 = real_div(x = concat_452, y = shape_482_cast_fp16)[name = string("real_div_47")]; + tensor hidden_states_705_cast_fp16 = tile(reps = real_div_47, x = var_4407_cast_fp16)[name = string("hidden_states_705_cast_fp16")]; + tensor concat_453x = const()[name = string("concat_453x"), val = tensor([1, 24, -1, 128])]; + tensor value_states_95_cast_fp16 = reshape(shape = concat_453x, x = hidden_states_705_cast_fp16)[name = string("value_states_95_cast_fp16")]; + tensor var_4417_shape_cast_fp16 = shape(x = key_states_95_cast_fp16)[name = string("op_4417_shape_cast_fp16")]; + int32 gather_435_axis_0 = const()[name = string("gather_435_axis_0"), val = int32(0)]; + int32 gather_435_batch_dims_0 = const()[name = string("gather_435_batch_dims_0"), val = int32(0)]; + bool gather_435_validate_indices_0 = const()[name = string("gather_435_validate_indices_0"), val = bool(false)]; + string var_4417_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_4417_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_435_to_uint16 = const()[name = string("select_435_to_uint16"), val = uint16(2)]; + tensor var_4417_shape_cast_fp16_to_uint16 = cast(dtype = var_4417_shape_cast_fp16_to_uint16_dtype_0, x = var_4417_shape_cast_fp16)[name = string("cast_34")]; + uint16 gather_435_cast_uint16 = gather(axis = gather_435_axis_0, batch_dims = gather_435_batch_dims_0, indices = select_435_to_uint16, validate_indices = gather_435_validate_indices_0, x = var_4417_shape_cast_fp16_to_uint16)[name = string("gather_435_cast_uint16")]; + string gather_435_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_435_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 concat_454_values0_0 = const()[name = string("concat_454_values0_0"), val = int32(1)]; + int32 concat_454_values1_0 = const()[name = string("concat_454_values1_0"), val = int32(1)]; + int32 concat_454_values2_0 = const()[name = string("concat_454_values2_0"), val = int32(0)]; + int32 concat_454_axis_0 = const()[name = string("concat_454_axis_0"), val = int32(0)]; + bool concat_454_interleave_0 = const()[name = string("concat_454_interleave_0"), val = bool(false)]; + int32 gather_435_cast_uint16_to_int32 = cast(dtype = gather_435_cast_uint16_to_int32_dtype_0, x = gather_435_cast_uint16)[name = string("cast_33")]; + tensor concat_454 = concat(axis = concat_454_axis_0, interleave = concat_454_interleave_0, values = (concat_454_values0_0, concat_454_values1_0, concat_454_values2_0, gather_435_cast_uint16_to_int32))[name = string("concat_454")]; + tensor causal_mask_49_begin_0 = const()[name = string("causal_mask_49_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor causal_mask_49_end_mask_0 = const()[name = string("causal_mask_49_end_mask_0"), val = tensor([true, true, true, false])]; + tensor causal_mask_49_cast_fp16 = slice_by_index(begin = causal_mask_49_begin_0, end = concat_454, end_mask = causal_mask_49_end_mask_0, x = causal_mask)[name = string("causal_mask_49_cast_fp16")]; + tensor attn_output_93_cast_fp16 = scaled_dot_product_attention(attn_mask = causal_mask_49_cast_fp16, key = key_states_95_cast_fp16, query = query_states_95_cast_fp16, value = value_states_95_cast_fp16)[name = string("attn_output_93_cast_fp16")]; + tensor var_4423_perm_0 = const()[name = string("op_4423_perm_0"), val = tensor([0, 2, 1, 3])]; + int32 concat_455_axis_0 = const()[name = string("concat_455_axis_0"), val = int32(0)]; + bool concat_455_interleave_0 = const()[name = string("concat_455_interleave_0"), val = bool(false)]; + int32 gather_419_cast_uint16_to_int32 = cast(dtype = gather_419_cast_uint16_to_int32_dtype_0, x = gather_419_cast_uint16)[name = string("cast_32")]; + tensor concat_455 = concat(axis = concat_455_axis_0, interleave = concat_455_interleave_0, values = (gather_418, gather_419_cast_uint16_to_int32, var_72))[name = string("concat_455")]; + tensor var_4423_cast_fp16 = transpose(perm = var_4423_perm_0, x = attn_output_93_cast_fp16)[name = string("transpose_16")]; + tensor input_185_cast_fp16 = reshape(shape = concat_455, x = var_4423_cast_fp16)[name = string("input_185_cast_fp16")]; + tensor model_model_layers_23_self_attn_o_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1533143040))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1537861696))))[name = string("model_model_layers_23_self_attn_o_proj_weight_to_fp16_quantized")]; + tensor linear_164_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_23_self_attn_o_proj_weight_to_fp16_quantized, x = input_185_cast_fp16)[name = string("linear_164_cast_fp16")]; + tensor hidden_states_709_cast_fp16 = add(x = hidden_states_689_cast_fp16, y = linear_164_cast_fp16)[name = string("hidden_states_709_cast_fp16")]; + fp16 var_78_promoted_47_to_fp16 = const()[name = string("op_78_promoted_47_to_fp16"), val = fp16(0x1p+1)]; + tensor var_4432_cast_fp16 = pow(x = hidden_states_709_cast_fp16, y = var_78_promoted_47_to_fp16)[name = string("op_4432_cast_fp16")]; + tensor variance_95_axes_0 = const()[name = string("variance_95_axes_0"), val = tensor([-1])]; + bool variance_95_keep_dims_0 = const()[name = string("variance_95_keep_dims_0"), val = bool(true)]; + tensor variance_95_cast_fp16 = reduce_mean(axes = variance_95_axes_0, keep_dims = variance_95_keep_dims_0, x = var_4432_cast_fp16)[name = string("variance_95_cast_fp16")]; + fp16 var_4435_to_fp16 = const()[name = string("op_4435_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_4436_cast_fp16 = add(x = variance_95_cast_fp16, y = var_4435_to_fp16)[name = string("op_4436_cast_fp16")]; + fp32 var_4437_epsilon_0 = const()[name = string("op_4437_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_4437_cast_fp16 = rsqrt(epsilon = var_4437_epsilon_0, x = var_4436_cast_fp16)[name = string("op_4437_cast_fp16")]; + tensor hidden_states_713_cast_fp16 = mul(x = hidden_states_709_cast_fp16, y = var_4437_cast_fp16)[name = string("hidden_states_713_cast_fp16")]; + tensor model_model_layers_23_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_23_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1538451584)))]; + tensor input_187_cast_fp16 = mul(x = model_model_layers_23_post_attention_layernorm_weight_to_fp16, y = hidden_states_713_cast_fp16)[name = string("input_187_cast_fp16")]; + tensor model_model_layers_23_mlp_gate_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1538457792))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1551040768))))[name = string("model_model_layers_23_mlp_gate_proj_weight_to_fp16_quantized")]; + tensor linear_165_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_23_mlp_gate_proj_weight_to_fp16_quantized, x = input_187_cast_fp16)[name = string("linear_165_cast_fp16")]; + tensor var_4449_cast_fp16 = silu(x = linear_165_cast_fp16)[name = string("op_4449_cast_fp16")]; + tensor model_model_layers_23_mlp_up_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1552613696))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1565196672))))[name = string("model_model_layers_23_mlp_up_proj_weight_to_fp16_quantized")]; + tensor linear_166_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_23_mlp_up_proj_weight_to_fp16_quantized, x = input_187_cast_fp16)[name = string("linear_166_cast_fp16")]; + tensor input_191_cast_fp16 = mul(x = var_4449_cast_fp16, y = linear_166_cast_fp16)[name = string("input_191_cast_fp16")]; + tensor model_model_layers_23_mlp_down_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1566769600))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1579352576))))[name = string("model_model_layers_23_mlp_down_proj_weight_to_fp16_quantized")]; + tensor linear_167_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_23_mlp_down_proj_weight_to_fp16_quantized, x = input_191_cast_fp16)[name = string("linear_167_cast_fp16")]; + tensor hidden_states_719_cast_fp16 = add(x = hidden_states_709_cast_fp16, y = linear_167_cast_fp16)[name = string("hidden_states_719_cast_fp16")]; + fp16 var_78_promoted_48_to_fp16 = const()[name = string("op_78_promoted_48_to_fp16"), val = fp16(0x1p+1)]; + tensor var_4462_cast_fp16 = pow(x = hidden_states_719_cast_fp16, y = var_78_promoted_48_to_fp16)[name = string("op_4462_cast_fp16")]; + tensor variance_97_axes_0 = const()[name = string("variance_97_axes_0"), val = tensor([-1])]; + bool variance_97_keep_dims_0 = const()[name = string("variance_97_keep_dims_0"), val = bool(true)]; + tensor variance_97_cast_fp16 = reduce_mean(axes = variance_97_axes_0, keep_dims = variance_97_keep_dims_0, x = var_4462_cast_fp16)[name = string("variance_97_cast_fp16")]; + fp16 var_4465_to_fp16 = const()[name = string("op_4465_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_4466_cast_fp16 = add(x = variance_97_cast_fp16, y = var_4465_to_fp16)[name = string("op_4466_cast_fp16")]; + fp32 var_4467_epsilon_0 = const()[name = string("op_4467_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_4467_cast_fp16 = rsqrt(epsilon = var_4467_epsilon_0, x = var_4466_cast_fp16)[name = string("op_4467_cast_fp16")]; + tensor hidden_states_723_cast_fp16 = mul(x = hidden_states_719_cast_fp16, y = var_4467_cast_fp16)[name = string("hidden_states_723_cast_fp16")]; + tensor model_model_layers_24_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_24_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1580925504)))]; + tensor hidden_states_727_cast_fp16 = mul(x = model_model_layers_24_input_layernorm_weight_to_fp16, y = hidden_states_723_cast_fp16)[name = string("hidden_states_727_cast_fp16")]; + tensor var_4478_shape_cast_fp16 = shape(x = hidden_states_727_cast_fp16)[name = string("op_4478_shape_cast_fp16")]; + int32 gather_436 = const()[name = string("gather_436"), val = int32(1)]; + int32 gather_437_axis_0 = const()[name = string("gather_437_axis_0"), val = int32(0)]; + int32 gather_437_batch_dims_0 = const()[name = string("gather_437_batch_dims_0"), val = int32(0)]; + bool gather_437_validate_indices_0 = const()[name = string("gather_437_validate_indices_0"), val = bool(false)]; + string var_4478_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_4478_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_437_to_uint16 = const()[name = string("select_437_to_uint16"), val = uint16(1)]; + tensor var_4478_shape_cast_fp16_to_uint16 = cast(dtype = var_4478_shape_cast_fp16_to_uint16_dtype_0, x = var_4478_shape_cast_fp16)[name = string("cast_31")]; + uint16 gather_437_cast_uint16 = gather(axis = gather_437_axis_0, batch_dims = gather_437_batch_dims_0, indices = select_437_to_uint16, validate_indices = gather_437_validate_indices_0, x = var_4478_shape_cast_fp16_to_uint16)[name = string("gather_437_cast_uint16")]; + string gather_437_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_437_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor model_model_layers_24_self_attn_q_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1580931712))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1585650368))))[name = string("model_model_layers_24_self_attn_q_proj_weight_to_fp16_quantized")]; + tensor linear_168_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_24_self_attn_q_proj_weight_to_fp16_quantized, x = hidden_states_727_cast_fp16)[name = string("linear_168_cast_fp16")]; + tensor model_model_layers_24_self_attn_k_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1586240256))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1587813184))))[name = string("model_model_layers_24_self_attn_k_proj_weight_to_fp16_quantized")]; + tensor linear_169_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_24_self_attn_k_proj_weight_to_fp16_quantized, x = hidden_states_727_cast_fp16)[name = string("linear_169_cast_fp16")]; + tensor model_model_layers_24_self_attn_v_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1588009856))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1589582784))))[name = string("model_model_layers_24_self_attn_v_proj_weight_to_fp16_quantized")]; + tensor linear_170_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_24_self_attn_v_proj_weight_to_fp16_quantized, x = hidden_states_727_cast_fp16)[name = string("linear_170_cast_fp16")]; + tensor concat_456x = const()[name = string("concat_456x"), val = tensor([1, -1, 24, 128])]; + tensor var_4487_cast_fp16 = reshape(shape = concat_456x, x = linear_168_cast_fp16)[name = string("op_4487_cast_fp16")]; + tensor q_49_perm_0 = const()[name = string("q_49_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_457x = const()[name = string("concat_457x"), val = tensor([1, -1, 8, 128])]; + tensor var_4490_cast_fp16 = reshape(shape = concat_457x, x = linear_169_cast_fp16)[name = string("op_4490_cast_fp16")]; + tensor k_49_perm_0 = const()[name = string("k_49_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_458x = const()[name = string("concat_458x"), val = tensor([1, -1, 8, 128])]; + tensor var_4493_cast_fp16 = reshape(shape = concat_458x, x = linear_170_cast_fp16)[name = string("op_4493_cast_fp16")]; + tensor v_state_49_perm_0 = const()[name = string("v_state_49_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor q_49_cast_fp16 = transpose(perm = q_49_perm_0, x = var_4487_cast_fp16)[name = string("transpose_15")]; + tensor var_4497_cast_fp16 = mul(x = q_49_cast_fp16, y = cos_7_cast_fp16)[name = string("op_4497_cast_fp16")]; + tensor x1_97_begin_0 = const()[name = string("x1_97_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_97_end_0 = const()[name = string("x1_97_end_0"), val = tensor([1, 24, 0, 64])]; + tensor x1_97_end_mask_0 = const()[name = string("x1_97_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_97_cast_fp16 = slice_by_index(begin = x1_97_begin_0, end = x1_97_end_0, end_mask = x1_97_end_mask_0, x = q_49_cast_fp16)[name = string("x1_97_cast_fp16")]; + tensor x2_97_begin_0 = const()[name = string("x2_97_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_97_end_0 = const()[name = string("x2_97_end_0"), val = tensor([1, 24, 0, 128])]; + tensor x2_97_end_mask_0 = const()[name = string("x2_97_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_97_cast_fp16 = slice_by_index(begin = x2_97_begin_0, end = x2_97_end_0, end_mask = x2_97_end_mask_0, x = q_49_cast_fp16)[name = string("x2_97_cast_fp16")]; + fp16 const_51_promoted_to_fp16 = const()[name = string("const_51_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_4508_cast_fp16 = mul(x = x2_97_cast_fp16, y = const_51_promoted_to_fp16)[name = string("op_4508_cast_fp16")]; + bool var_4510_interleave_0 = const()[name = string("op_4510_interleave_0"), val = bool(false)]; + tensor var_4510_cast_fp16 = concat(axis = var_72, interleave = var_4510_interleave_0, values = (var_4508_cast_fp16, x1_97_cast_fp16))[name = string("op_4510_cast_fp16")]; + tensor var_4511_cast_fp16 = mul(x = var_4510_cast_fp16, y = sin_7_cast_fp16)[name = string("op_4511_cast_fp16")]; + tensor query_states_99_cast_fp16 = add(x = var_4497_cast_fp16, y = var_4511_cast_fp16)[name = string("query_states_99_cast_fp16")]; + tensor k_49_cast_fp16 = transpose(perm = k_49_perm_0, x = var_4490_cast_fp16)[name = string("transpose_14")]; + tensor var_4513_cast_fp16 = mul(x = k_49_cast_fp16, y = cos_7_cast_fp16)[name = string("op_4513_cast_fp16")]; + tensor x1_99_begin_0 = const()[name = string("x1_99_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_99_end_0 = const()[name = string("x1_99_end_0"), val = tensor([1, 8, 0, 64])]; + tensor x1_99_end_mask_0 = const()[name = string("x1_99_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_99_cast_fp16 = slice_by_index(begin = x1_99_begin_0, end = x1_99_end_0, end_mask = x1_99_end_mask_0, x = k_49_cast_fp16)[name = string("x1_99_cast_fp16")]; + tensor x2_99_begin_0 = const()[name = string("x2_99_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_99_end_0 = const()[name = string("x2_99_end_0"), val = tensor([1, 8, 0, 128])]; + tensor x2_99_end_mask_0 = const()[name = string("x2_99_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_99_cast_fp16 = slice_by_index(begin = x2_99_begin_0, end = x2_99_end_0, end_mask = x2_99_end_mask_0, x = k_49_cast_fp16)[name = string("x2_99_cast_fp16")]; + fp16 const_52_promoted_to_fp16 = const()[name = string("const_52_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_4524_cast_fp16 = mul(x = x2_99_cast_fp16, y = const_52_promoted_to_fp16)[name = string("op_4524_cast_fp16")]; + bool var_4526_interleave_0 = const()[name = string("op_4526_interleave_0"), val = bool(false)]; + tensor var_4526_cast_fp16 = concat(axis = var_72, interleave = var_4526_interleave_0, values = (var_4524_cast_fp16, x1_99_cast_fp16))[name = string("op_4526_cast_fp16")]; + tensor var_4527_cast_fp16 = mul(x = var_4526_cast_fp16, y = sin_7_cast_fp16)[name = string("op_4527_cast_fp16")]; + tensor k_state_49_cast_fp16 = add(x = var_4513_cast_fp16, y = var_4527_cast_fp16)[name = string("k_state_49_cast_fp16")]; + tensor expand_dims_288 = const()[name = string("expand_dims_288"), val = tensor([0])]; + tensor expand_dims_289 = const()[name = string("expand_dims_289"), val = tensor([0])]; + tensor expand_dims_291 = const()[name = string("expand_dims_291"), val = tensor([0])]; + tensor concat_461_values0_0 = const()[name = string("concat_461_values0_0"), val = tensor([24])]; + int32 concat_461_axis_0 = const()[name = string("concat_461_axis_0"), val = int32(0)]; + bool concat_461_interleave_0 = const()[name = string("concat_461_interleave_0"), val = bool(false)]; + tensor concat_461 = concat(axis = concat_461_axis_0, interleave = concat_461_interleave_0, values = (concat_461_values0_0, expand_dims_288, expand_dims_289, expand_dims_2, expand_dims_291))[name = string("concat_461")]; + tensor key_cache_internal_tensor_assign_25_stride_0 = const()[name = string("key_cache_internal_tensor_assign_25_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor key_cache_internal_tensor_assign_25_begin_mask_0 = const()[name = string("key_cache_internal_tensor_assign_25_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_25_end_mask_0 = const()[name = string("key_cache_internal_tensor_assign_25_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor key_cache_internal_tensor_assign_25_squeeze_mask_0 = const()[name = string("key_cache_internal_tensor_assign_25_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_25_cast_fp16 = slice_update(begin = concat_461, begin_mask = key_cache_internal_tensor_assign_25_begin_mask_0, end = concat_6, end_mask = key_cache_internal_tensor_assign_25_end_mask_0, squeeze_mask = key_cache_internal_tensor_assign_25_squeeze_mask_0, stride = key_cache_internal_tensor_assign_25_stride_0, update = k_state_49_cast_fp16, x = coreml_update_state_102)[name = string("key_cache_internal_tensor_assign_25_cast_fp16")]; + write_state(data = key_cache_internal_tensor_assign_25_cast_fp16, input = key_cache)[name = string("coreml_update_state_104_write_state")]; + tensor coreml_update_state_104 = read_state(input = key_cache)[name = string("coreml_update_state_104")]; + tensor value_cache_internal_tensor_assign_25_stride_0 = const()[name = string("value_cache_internal_tensor_assign_25_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor value_cache_internal_tensor_assign_25_begin_mask_0 = const()[name = string("value_cache_internal_tensor_assign_25_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor value_cache_internal_tensor_assign_25_end_mask_0 = const()[name = string("value_cache_internal_tensor_assign_25_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor value_cache_internal_tensor_assign_25_squeeze_mask_0 = const()[name = string("value_cache_internal_tensor_assign_25_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor v_state_49_cast_fp16 = transpose(perm = v_state_49_perm_0, x = var_4493_cast_fp16)[name = string("transpose_13")]; + tensor value_cache_internal_tensor_assign_25_cast_fp16 = slice_update(begin = concat_461, begin_mask = value_cache_internal_tensor_assign_25_begin_mask_0, end = concat_6, end_mask = value_cache_internal_tensor_assign_25_end_mask_0, squeeze_mask = value_cache_internal_tensor_assign_25_squeeze_mask_0, stride = value_cache_internal_tensor_assign_25_stride_0, update = v_state_49_cast_fp16, x = coreml_update_state_103)[name = string("value_cache_internal_tensor_assign_25_cast_fp16")]; + write_state(data = value_cache_internal_tensor_assign_25_cast_fp16, input = value_cache)[name = string("coreml_update_state_105_write_state")]; + tensor coreml_update_state_105 = read_state(input = value_cache)[name = string("coreml_update_state_105")]; + tensor var_4550_begin_0 = const()[name = string("op_4550_begin_0"), val = tensor([24, 0, 0, 0, 0])]; + tensor var_4550_end_0 = const()[name = string("op_4550_end_0"), val = tensor([25, 1, 8, 2048, 128])]; + tensor var_4550_end_mask_0 = const()[name = string("op_4550_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_4550_squeeze_mask_0 = const()[name = string("op_4550_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_4550_cast_fp16 = slice_by_index(begin = var_4550_begin_0, end = var_4550_end_0, end_mask = var_4550_end_mask_0, squeeze_mask = var_4550_squeeze_mask_0, x = coreml_update_state_104)[name = string("op_4550_cast_fp16")]; + tensor var_4553_begin_0 = const()[name = string("op_4553_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_4553_end_mask_0 = const()[name = string("op_4553_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_4553_cast_fp16 = slice_by_index(begin = var_4553_begin_0, end = concat_11, end_mask = var_4553_end_mask_0, x = var_4550_cast_fp16)[name = string("op_4553_cast_fp16")]; + tensor var_4555_begin_0 = const()[name = string("op_4555_begin_0"), val = tensor([24, 0, 0, 0, 0])]; + tensor var_4555_end_0 = const()[name = string("op_4555_end_0"), val = tensor([25, 1, 8, 2048, 128])]; + tensor var_4555_end_mask_0 = const()[name = string("op_4555_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_4555_squeeze_mask_0 = const()[name = string("op_4555_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_4555_cast_fp16 = slice_by_index(begin = var_4555_begin_0, end = var_4555_end_0, end_mask = var_4555_end_mask_0, squeeze_mask = var_4555_squeeze_mask_0, x = coreml_update_state_105)[name = string("op_4555_cast_fp16")]; + tensor var_4558_begin_0 = const()[name = string("op_4558_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_4558_end_mask_0 = const()[name = string("op_4558_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_4558_cast_fp16 = slice_by_index(begin = var_4558_begin_0, end = concat_11, end_mask = var_4558_end_mask_0, x = var_4555_cast_fp16)[name = string("op_4558_cast_fp16")]; + tensor var_4560_shape_cast_fp16 = shape(x = var_4553_cast_fp16)[name = string("op_4560_shape_cast_fp16")]; + int32 gather_445 = const()[name = string("gather_445"), val = int32(1)]; + int32 gather_446 = const()[name = string("gather_446"), val = int32(8)]; + int32 gather_447_axis_0 = const()[name = string("gather_447_axis_0"), val = int32(0)]; + int32 gather_447_batch_dims_0 = const()[name = string("gather_447_batch_dims_0"), val = int32(0)]; + bool gather_447_validate_indices_0 = const()[name = string("gather_447_validate_indices_0"), val = bool(false)]; + string var_4560_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_4560_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_447_to_uint16 = const()[name = string("select_447_to_uint16"), val = uint16(2)]; + tensor var_4560_shape_cast_fp16_to_uint16 = cast(dtype = var_4560_shape_cast_fp16_to_uint16_dtype_0, x = var_4560_shape_cast_fp16)[name = string("cast_30")]; + uint16 gather_447_cast_uint16 = gather(axis = gather_447_axis_0, batch_dims = gather_447_batch_dims_0, indices = select_447_to_uint16, validate_indices = gather_447_validate_indices_0, x = var_4560_shape_cast_fp16_to_uint16)[name = string("gather_447_cast_uint16")]; + string gather_447_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_447_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_448 = const()[name = string("gather_448"), val = int32(128)]; + tensor var_4567_axes_0 = const()[name = string("op_4567_axes_0"), val = tensor([2])]; + tensor var_4567_cast_fp16 = expand_dims(axes = var_4567_axes_0, x = var_4553_cast_fp16)[name = string("op_4567_cast_fp16")]; + tensor shape_497_cast_fp16 = shape(x = var_4567_cast_fp16)[name = string("shape_497_cast_fp16")]; + int32 concat_469_axis_0 = const()[name = string("concat_469_axis_0"), val = int32(0)]; + bool concat_469_interleave_0 = const()[name = string("concat_469_interleave_0"), val = bool(false)]; + int32 gather_447_cast_uint16_to_int32 = cast(dtype = gather_447_cast_uint16_to_int32_dtype_0, x = gather_447_cast_uint16)[name = string("cast_29")]; + tensor concat_469 = concat(axis = concat_469_axis_0, interleave = concat_469_interleave_0, values = (gather_445, gather_446, var_81, gather_447_cast_uint16_to_int32, gather_448))[name = string("concat_469")]; + tensor real_div_48 = real_div(x = concat_469, y = shape_497_cast_fp16)[name = string("real_div_48")]; + tensor hidden_states_731_cast_fp16 = tile(reps = real_div_48, x = var_4567_cast_fp16)[name = string("hidden_states_731_cast_fp16")]; + tensor concat_470x = const()[name = string("concat_470x"), val = tensor([1, 24, -1, 128])]; + tensor key_states_99_cast_fp16 = reshape(shape = concat_470x, x = hidden_states_731_cast_fp16)[name = string("key_states_99_cast_fp16")]; + tensor var_4577_shape_cast_fp16 = shape(x = var_4558_cast_fp16)[name = string("op_4577_shape_cast_fp16")]; + int32 gather_449 = const()[name = string("gather_449"), val = int32(1)]; + int32 gather_450 = const()[name = string("gather_450"), val = int32(8)]; + int32 gather_451_axis_0 = const()[name = string("gather_451_axis_0"), val = int32(0)]; + int32 gather_451_batch_dims_0 = const()[name = string("gather_451_batch_dims_0"), val = int32(0)]; + bool gather_451_validate_indices_0 = const()[name = string("gather_451_validate_indices_0"), val = bool(false)]; + string var_4577_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_4577_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_451_to_uint16 = const()[name = string("select_451_to_uint16"), val = uint16(2)]; + tensor var_4577_shape_cast_fp16_to_uint16 = cast(dtype = var_4577_shape_cast_fp16_to_uint16_dtype_0, x = var_4577_shape_cast_fp16)[name = string("cast_28")]; + uint16 gather_451_cast_uint16 = gather(axis = gather_451_axis_0, batch_dims = gather_451_batch_dims_0, indices = select_451_to_uint16, validate_indices = gather_451_validate_indices_0, x = var_4577_shape_cast_fp16_to_uint16)[name = string("gather_451_cast_uint16")]; + string gather_451_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_451_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_452 = const()[name = string("gather_452"), val = int32(128)]; + tensor var_4584_axes_0 = const()[name = string("op_4584_axes_0"), val = tensor([2])]; + tensor var_4584_cast_fp16 = expand_dims(axes = var_4584_axes_0, x = var_4558_cast_fp16)[name = string("op_4584_cast_fp16")]; + tensor shape_502_cast_fp16 = shape(x = var_4584_cast_fp16)[name = string("shape_502_cast_fp16")]; + int32 concat_471_axis_0 = const()[name = string("concat_471_axis_0"), val = int32(0)]; + bool concat_471_interleave_0 = const()[name = string("concat_471_interleave_0"), val = bool(false)]; + int32 gather_451_cast_uint16_to_int32 = cast(dtype = gather_451_cast_uint16_to_int32_dtype_0, x = gather_451_cast_uint16)[name = string("cast_27")]; + tensor concat_471 = concat(axis = concat_471_axis_0, interleave = concat_471_interleave_0, values = (gather_449, gather_450, var_81, gather_451_cast_uint16_to_int32, gather_452))[name = string("concat_471")]; + tensor real_div_49 = real_div(x = concat_471, y = shape_502_cast_fp16)[name = string("real_div_49")]; + tensor hidden_states_735_cast_fp16 = tile(reps = real_div_49, x = var_4584_cast_fp16)[name = string("hidden_states_735_cast_fp16")]; + tensor concat_472x = const()[name = string("concat_472x"), val = tensor([1, 24, -1, 128])]; + tensor value_states_99_cast_fp16 = reshape(shape = concat_472x, x = hidden_states_735_cast_fp16)[name = string("value_states_99_cast_fp16")]; + tensor var_4594_shape_cast_fp16 = shape(x = key_states_99_cast_fp16)[name = string("op_4594_shape_cast_fp16")]; + int32 gather_453_axis_0 = const()[name = string("gather_453_axis_0"), val = int32(0)]; + int32 gather_453_batch_dims_0 = const()[name = string("gather_453_batch_dims_0"), val = int32(0)]; + bool gather_453_validate_indices_0 = const()[name = string("gather_453_validate_indices_0"), val = bool(false)]; + string var_4594_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_4594_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_453_to_uint16 = const()[name = string("select_453_to_uint16"), val = uint16(2)]; + tensor var_4594_shape_cast_fp16_to_uint16 = cast(dtype = var_4594_shape_cast_fp16_to_uint16_dtype_0, x = var_4594_shape_cast_fp16)[name = string("cast_26")]; + uint16 gather_453_cast_uint16 = gather(axis = gather_453_axis_0, batch_dims = gather_453_batch_dims_0, indices = select_453_to_uint16, validate_indices = gather_453_validate_indices_0, x = var_4594_shape_cast_fp16_to_uint16)[name = string("gather_453_cast_uint16")]; + string gather_453_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_453_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 concat_473_values0_0 = const()[name = string("concat_473_values0_0"), val = int32(1)]; + int32 concat_473_values1_0 = const()[name = string("concat_473_values1_0"), val = int32(1)]; + int32 concat_473_values2_0 = const()[name = string("concat_473_values2_0"), val = int32(0)]; + int32 concat_473_axis_0 = const()[name = string("concat_473_axis_0"), val = int32(0)]; + bool concat_473_interleave_0 = const()[name = string("concat_473_interleave_0"), val = bool(false)]; + int32 gather_453_cast_uint16_to_int32 = cast(dtype = gather_453_cast_uint16_to_int32_dtype_0, x = gather_453_cast_uint16)[name = string("cast_25")]; + tensor concat_473 = concat(axis = concat_473_axis_0, interleave = concat_473_interleave_0, values = (concat_473_values0_0, concat_473_values1_0, concat_473_values2_0, gather_453_cast_uint16_to_int32))[name = string("concat_473")]; + tensor causal_mask_51_begin_0 = const()[name = string("causal_mask_51_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor causal_mask_51_end_mask_0 = const()[name = string("causal_mask_51_end_mask_0"), val = tensor([true, true, true, false])]; + tensor causal_mask_51_cast_fp16 = slice_by_index(begin = causal_mask_51_begin_0, end = concat_473, end_mask = causal_mask_51_end_mask_0, x = causal_mask)[name = string("causal_mask_51_cast_fp16")]; + tensor attn_output_97_cast_fp16 = scaled_dot_product_attention(attn_mask = causal_mask_51_cast_fp16, key = key_states_99_cast_fp16, query = query_states_99_cast_fp16, value = value_states_99_cast_fp16)[name = string("attn_output_97_cast_fp16")]; + tensor var_4600_perm_0 = const()[name = string("op_4600_perm_0"), val = tensor([0, 2, 1, 3])]; + int32 concat_474_axis_0 = const()[name = string("concat_474_axis_0"), val = int32(0)]; + bool concat_474_interleave_0 = const()[name = string("concat_474_interleave_0"), val = bool(false)]; + int32 gather_437_cast_uint16_to_int32 = cast(dtype = gather_437_cast_uint16_to_int32_dtype_0, x = gather_437_cast_uint16)[name = string("cast_24")]; + tensor concat_474 = concat(axis = concat_474_axis_0, interleave = concat_474_interleave_0, values = (gather_436, gather_437_cast_uint16_to_int32, var_72))[name = string("concat_474")]; + tensor var_4600_cast_fp16 = transpose(perm = var_4600_perm_0, x = attn_output_97_cast_fp16)[name = string("transpose_12")]; + tensor input_193_cast_fp16 = reshape(shape = concat_474, x = var_4600_cast_fp16)[name = string("input_193_cast_fp16")]; + tensor model_model_layers_24_self_attn_o_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1589779456))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1594498112))))[name = string("model_model_layers_24_self_attn_o_proj_weight_to_fp16_quantized")]; + tensor linear_171_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_24_self_attn_o_proj_weight_to_fp16_quantized, x = input_193_cast_fp16)[name = string("linear_171_cast_fp16")]; + tensor hidden_states_739_cast_fp16 = add(x = hidden_states_719_cast_fp16, y = linear_171_cast_fp16)[name = string("hidden_states_739_cast_fp16")]; + fp16 var_78_promoted_49_to_fp16 = const()[name = string("op_78_promoted_49_to_fp16"), val = fp16(0x1p+1)]; + tensor var_4609_cast_fp16 = pow(x = hidden_states_739_cast_fp16, y = var_78_promoted_49_to_fp16)[name = string("op_4609_cast_fp16")]; + tensor variance_99_axes_0 = const()[name = string("variance_99_axes_0"), val = tensor([-1])]; + bool variance_99_keep_dims_0 = const()[name = string("variance_99_keep_dims_0"), val = bool(true)]; + tensor variance_99_cast_fp16 = reduce_mean(axes = variance_99_axes_0, keep_dims = variance_99_keep_dims_0, x = var_4609_cast_fp16)[name = string("variance_99_cast_fp16")]; + fp16 var_4612_to_fp16 = const()[name = string("op_4612_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_4613_cast_fp16 = add(x = variance_99_cast_fp16, y = var_4612_to_fp16)[name = string("op_4613_cast_fp16")]; + fp32 var_4614_epsilon_0 = const()[name = string("op_4614_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_4614_cast_fp16 = rsqrt(epsilon = var_4614_epsilon_0, x = var_4613_cast_fp16)[name = string("op_4614_cast_fp16")]; + tensor hidden_states_743_cast_fp16 = mul(x = hidden_states_739_cast_fp16, y = var_4614_cast_fp16)[name = string("hidden_states_743_cast_fp16")]; + tensor model_model_layers_24_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_24_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1595088000)))]; + tensor input_195_cast_fp16 = mul(x = model_model_layers_24_post_attention_layernorm_weight_to_fp16, y = hidden_states_743_cast_fp16)[name = string("input_195_cast_fp16")]; + tensor model_model_layers_24_mlp_gate_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1595094208))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1607677184))))[name = string("model_model_layers_24_mlp_gate_proj_weight_to_fp16_quantized")]; + tensor linear_172_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_24_mlp_gate_proj_weight_to_fp16_quantized, x = input_195_cast_fp16)[name = string("linear_172_cast_fp16")]; + tensor var_4626_cast_fp16 = silu(x = linear_172_cast_fp16)[name = string("op_4626_cast_fp16")]; + tensor model_model_layers_24_mlp_up_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1609250112))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1621833088))))[name = string("model_model_layers_24_mlp_up_proj_weight_to_fp16_quantized")]; + tensor linear_173_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_24_mlp_up_proj_weight_to_fp16_quantized, x = input_195_cast_fp16)[name = string("linear_173_cast_fp16")]; + tensor input_199_cast_fp16 = mul(x = var_4626_cast_fp16, y = linear_173_cast_fp16)[name = string("input_199_cast_fp16")]; + tensor model_model_layers_24_mlp_down_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1623406016))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1635988992))))[name = string("model_model_layers_24_mlp_down_proj_weight_to_fp16_quantized")]; + tensor linear_174_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_24_mlp_down_proj_weight_to_fp16_quantized, x = input_199_cast_fp16)[name = string("linear_174_cast_fp16")]; + tensor hidden_states_749_cast_fp16 = add(x = hidden_states_739_cast_fp16, y = linear_174_cast_fp16)[name = string("hidden_states_749_cast_fp16")]; + fp16 var_78_promoted_50_to_fp16 = const()[name = string("op_78_promoted_50_to_fp16"), val = fp16(0x1p+1)]; + tensor var_4639_cast_fp16 = pow(x = hidden_states_749_cast_fp16, y = var_78_promoted_50_to_fp16)[name = string("op_4639_cast_fp16")]; + tensor variance_101_axes_0 = const()[name = string("variance_101_axes_0"), val = tensor([-1])]; + bool variance_101_keep_dims_0 = const()[name = string("variance_101_keep_dims_0"), val = bool(true)]; + tensor variance_101_cast_fp16 = reduce_mean(axes = variance_101_axes_0, keep_dims = variance_101_keep_dims_0, x = var_4639_cast_fp16)[name = string("variance_101_cast_fp16")]; + fp16 var_4642_to_fp16 = const()[name = string("op_4642_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_4643_cast_fp16 = add(x = variance_101_cast_fp16, y = var_4642_to_fp16)[name = string("op_4643_cast_fp16")]; + fp32 var_4644_epsilon_0 = const()[name = string("op_4644_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_4644_cast_fp16 = rsqrt(epsilon = var_4644_epsilon_0, x = var_4643_cast_fp16)[name = string("op_4644_cast_fp16")]; + tensor hidden_states_753_cast_fp16 = mul(x = hidden_states_749_cast_fp16, y = var_4644_cast_fp16)[name = string("hidden_states_753_cast_fp16")]; + tensor model_model_layers_25_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_25_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1637561920)))]; + tensor hidden_states_757_cast_fp16 = mul(x = model_model_layers_25_input_layernorm_weight_to_fp16, y = hidden_states_753_cast_fp16)[name = string("hidden_states_757_cast_fp16")]; + tensor var_4655_shape_cast_fp16 = shape(x = hidden_states_757_cast_fp16)[name = string("op_4655_shape_cast_fp16")]; + int32 gather_454 = const()[name = string("gather_454"), val = int32(1)]; + int32 gather_455_axis_0 = const()[name = string("gather_455_axis_0"), val = int32(0)]; + int32 gather_455_batch_dims_0 = const()[name = string("gather_455_batch_dims_0"), val = int32(0)]; + bool gather_455_validate_indices_0 = const()[name = string("gather_455_validate_indices_0"), val = bool(false)]; + string var_4655_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_4655_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_455_to_uint16 = const()[name = string("select_455_to_uint16"), val = uint16(1)]; + tensor var_4655_shape_cast_fp16_to_uint16 = cast(dtype = var_4655_shape_cast_fp16_to_uint16_dtype_0, x = var_4655_shape_cast_fp16)[name = string("cast_23")]; + uint16 gather_455_cast_uint16 = gather(axis = gather_455_axis_0, batch_dims = gather_455_batch_dims_0, indices = select_455_to_uint16, validate_indices = gather_455_validate_indices_0, x = var_4655_shape_cast_fp16_to_uint16)[name = string("gather_455_cast_uint16")]; + string gather_455_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_455_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor model_model_layers_25_self_attn_q_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1637568128))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1642286784))))[name = string("model_model_layers_25_self_attn_q_proj_weight_to_fp16_quantized")]; + tensor linear_175_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_25_self_attn_q_proj_weight_to_fp16_quantized, x = hidden_states_757_cast_fp16)[name = string("linear_175_cast_fp16")]; + tensor model_model_layers_25_self_attn_k_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1642876672))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1644449600))))[name = string("model_model_layers_25_self_attn_k_proj_weight_to_fp16_quantized")]; + tensor linear_176_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_25_self_attn_k_proj_weight_to_fp16_quantized, x = hidden_states_757_cast_fp16)[name = string("linear_176_cast_fp16")]; + tensor model_model_layers_25_self_attn_v_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1644646272))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1646219200))))[name = string("model_model_layers_25_self_attn_v_proj_weight_to_fp16_quantized")]; + tensor linear_177_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_25_self_attn_v_proj_weight_to_fp16_quantized, x = hidden_states_757_cast_fp16)[name = string("linear_177_cast_fp16")]; + tensor concat_475x = const()[name = string("concat_475x"), val = tensor([1, -1, 24, 128])]; + tensor var_4664_cast_fp16 = reshape(shape = concat_475x, x = linear_175_cast_fp16)[name = string("op_4664_cast_fp16")]; + tensor q_51_perm_0 = const()[name = string("q_51_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_476x = const()[name = string("concat_476x"), val = tensor([1, -1, 8, 128])]; + tensor var_4667_cast_fp16 = reshape(shape = concat_476x, x = linear_176_cast_fp16)[name = string("op_4667_cast_fp16")]; + tensor k_51_perm_0 = const()[name = string("k_51_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_477x = const()[name = string("concat_477x"), val = tensor([1, -1, 8, 128])]; + tensor var_4670_cast_fp16 = reshape(shape = concat_477x, x = linear_177_cast_fp16)[name = string("op_4670_cast_fp16")]; + tensor v_state_51_perm_0 = const()[name = string("v_state_51_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor q_51_cast_fp16 = transpose(perm = q_51_perm_0, x = var_4664_cast_fp16)[name = string("transpose_11")]; + tensor var_4674_cast_fp16 = mul(x = q_51_cast_fp16, y = cos_7_cast_fp16)[name = string("op_4674_cast_fp16")]; + tensor x1_101_begin_0 = const()[name = string("x1_101_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_101_end_0 = const()[name = string("x1_101_end_0"), val = tensor([1, 24, 0, 64])]; + tensor x1_101_end_mask_0 = const()[name = string("x1_101_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_101_cast_fp16 = slice_by_index(begin = x1_101_begin_0, end = x1_101_end_0, end_mask = x1_101_end_mask_0, x = q_51_cast_fp16)[name = string("x1_101_cast_fp16")]; + tensor x2_101_begin_0 = const()[name = string("x2_101_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_101_end_0 = const()[name = string("x2_101_end_0"), val = tensor([1, 24, 0, 128])]; + tensor x2_101_end_mask_0 = const()[name = string("x2_101_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_101_cast_fp16 = slice_by_index(begin = x2_101_begin_0, end = x2_101_end_0, end_mask = x2_101_end_mask_0, x = q_51_cast_fp16)[name = string("x2_101_cast_fp16")]; + fp16 const_53_promoted_to_fp16 = const()[name = string("const_53_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_4685_cast_fp16 = mul(x = x2_101_cast_fp16, y = const_53_promoted_to_fp16)[name = string("op_4685_cast_fp16")]; + bool var_4687_interleave_0 = const()[name = string("op_4687_interleave_0"), val = bool(false)]; + tensor var_4687_cast_fp16 = concat(axis = var_72, interleave = var_4687_interleave_0, values = (var_4685_cast_fp16, x1_101_cast_fp16))[name = string("op_4687_cast_fp16")]; + tensor var_4688_cast_fp16 = mul(x = var_4687_cast_fp16, y = sin_7_cast_fp16)[name = string("op_4688_cast_fp16")]; + tensor query_states_103_cast_fp16 = add(x = var_4674_cast_fp16, y = var_4688_cast_fp16)[name = string("query_states_103_cast_fp16")]; + tensor k_51_cast_fp16 = transpose(perm = k_51_perm_0, x = var_4667_cast_fp16)[name = string("transpose_10")]; + tensor var_4690_cast_fp16 = mul(x = k_51_cast_fp16, y = cos_7_cast_fp16)[name = string("op_4690_cast_fp16")]; + tensor x1_103_begin_0 = const()[name = string("x1_103_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_103_end_0 = const()[name = string("x1_103_end_0"), val = tensor([1, 8, 0, 64])]; + tensor x1_103_end_mask_0 = const()[name = string("x1_103_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_103_cast_fp16 = slice_by_index(begin = x1_103_begin_0, end = x1_103_end_0, end_mask = x1_103_end_mask_0, x = k_51_cast_fp16)[name = string("x1_103_cast_fp16")]; + tensor x2_103_begin_0 = const()[name = string("x2_103_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_103_end_0 = const()[name = string("x2_103_end_0"), val = tensor([1, 8, 0, 128])]; + tensor x2_103_end_mask_0 = const()[name = string("x2_103_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_103_cast_fp16 = slice_by_index(begin = x2_103_begin_0, end = x2_103_end_0, end_mask = x2_103_end_mask_0, x = k_51_cast_fp16)[name = string("x2_103_cast_fp16")]; + fp16 const_54_promoted_to_fp16 = const()[name = string("const_54_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_4701_cast_fp16 = mul(x = x2_103_cast_fp16, y = const_54_promoted_to_fp16)[name = string("op_4701_cast_fp16")]; + bool var_4703_interleave_0 = const()[name = string("op_4703_interleave_0"), val = bool(false)]; + tensor var_4703_cast_fp16 = concat(axis = var_72, interleave = var_4703_interleave_0, values = (var_4701_cast_fp16, x1_103_cast_fp16))[name = string("op_4703_cast_fp16")]; + tensor var_4704_cast_fp16 = mul(x = var_4703_cast_fp16, y = sin_7_cast_fp16)[name = string("op_4704_cast_fp16")]; + tensor k_state_51_cast_fp16 = add(x = var_4690_cast_fp16, y = var_4704_cast_fp16)[name = string("k_state_51_cast_fp16")]; + tensor expand_dims_300 = const()[name = string("expand_dims_300"), val = tensor([0])]; + tensor expand_dims_301 = const()[name = string("expand_dims_301"), val = tensor([0])]; + tensor expand_dims_303 = const()[name = string("expand_dims_303"), val = tensor([0])]; + tensor concat_480_values0_0 = const()[name = string("concat_480_values0_0"), val = tensor([25])]; + int32 concat_480_axis_0 = const()[name = string("concat_480_axis_0"), val = int32(0)]; + bool concat_480_interleave_0 = const()[name = string("concat_480_interleave_0"), val = bool(false)]; + tensor concat_480 = concat(axis = concat_480_axis_0, interleave = concat_480_interleave_0, values = (concat_480_values0_0, expand_dims_300, expand_dims_301, expand_dims_2, expand_dims_303))[name = string("concat_480")]; + tensor key_cache_internal_tensor_assign_26_stride_0 = const()[name = string("key_cache_internal_tensor_assign_26_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor key_cache_internal_tensor_assign_26_begin_mask_0 = const()[name = string("key_cache_internal_tensor_assign_26_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_26_end_mask_0 = const()[name = string("key_cache_internal_tensor_assign_26_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor key_cache_internal_tensor_assign_26_squeeze_mask_0 = const()[name = string("key_cache_internal_tensor_assign_26_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_26_cast_fp16 = slice_update(begin = concat_480, begin_mask = key_cache_internal_tensor_assign_26_begin_mask_0, end = concat_6, end_mask = key_cache_internal_tensor_assign_26_end_mask_0, squeeze_mask = key_cache_internal_tensor_assign_26_squeeze_mask_0, stride = key_cache_internal_tensor_assign_26_stride_0, update = k_state_51_cast_fp16, x = coreml_update_state_104)[name = string("key_cache_internal_tensor_assign_26_cast_fp16")]; + write_state(data = key_cache_internal_tensor_assign_26_cast_fp16, input = key_cache)[name = string("coreml_update_state_106_write_state")]; + tensor coreml_update_state_106 = read_state(input = key_cache)[name = string("coreml_update_state_106")]; + tensor value_cache_internal_tensor_assign_26_stride_0 = const()[name = string("value_cache_internal_tensor_assign_26_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor value_cache_internal_tensor_assign_26_begin_mask_0 = const()[name = string("value_cache_internal_tensor_assign_26_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor value_cache_internal_tensor_assign_26_end_mask_0 = const()[name = string("value_cache_internal_tensor_assign_26_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor value_cache_internal_tensor_assign_26_squeeze_mask_0 = const()[name = string("value_cache_internal_tensor_assign_26_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor v_state_51_cast_fp16 = transpose(perm = v_state_51_perm_0, x = var_4670_cast_fp16)[name = string("transpose_9")]; + tensor value_cache_internal_tensor_assign_26_cast_fp16 = slice_update(begin = concat_480, begin_mask = value_cache_internal_tensor_assign_26_begin_mask_0, end = concat_6, end_mask = value_cache_internal_tensor_assign_26_end_mask_0, squeeze_mask = value_cache_internal_tensor_assign_26_squeeze_mask_0, stride = value_cache_internal_tensor_assign_26_stride_0, update = v_state_51_cast_fp16, x = coreml_update_state_105)[name = string("value_cache_internal_tensor_assign_26_cast_fp16")]; + write_state(data = value_cache_internal_tensor_assign_26_cast_fp16, input = value_cache)[name = string("coreml_update_state_107_write_state")]; + tensor coreml_update_state_107 = read_state(input = value_cache)[name = string("coreml_update_state_107")]; + tensor var_4727_begin_0 = const()[name = string("op_4727_begin_0"), val = tensor([25, 0, 0, 0, 0])]; + tensor var_4727_end_0 = const()[name = string("op_4727_end_0"), val = tensor([26, 1, 8, 2048, 128])]; + tensor var_4727_end_mask_0 = const()[name = string("op_4727_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_4727_squeeze_mask_0 = const()[name = string("op_4727_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_4727_cast_fp16 = slice_by_index(begin = var_4727_begin_0, end = var_4727_end_0, end_mask = var_4727_end_mask_0, squeeze_mask = var_4727_squeeze_mask_0, x = coreml_update_state_106)[name = string("op_4727_cast_fp16")]; + tensor var_4730_begin_0 = const()[name = string("op_4730_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_4730_end_mask_0 = const()[name = string("op_4730_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_4730_cast_fp16 = slice_by_index(begin = var_4730_begin_0, end = concat_11, end_mask = var_4730_end_mask_0, x = var_4727_cast_fp16)[name = string("op_4730_cast_fp16")]; + tensor var_4732_begin_0 = const()[name = string("op_4732_begin_0"), val = tensor([25, 0, 0, 0, 0])]; + tensor var_4732_end_0 = const()[name = string("op_4732_end_0"), val = tensor([26, 1, 8, 2048, 128])]; + tensor var_4732_end_mask_0 = const()[name = string("op_4732_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_4732_squeeze_mask_0 = const()[name = string("op_4732_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_4732_cast_fp16 = slice_by_index(begin = var_4732_begin_0, end = var_4732_end_0, end_mask = var_4732_end_mask_0, squeeze_mask = var_4732_squeeze_mask_0, x = coreml_update_state_107)[name = string("op_4732_cast_fp16")]; + tensor var_4735_begin_0 = const()[name = string("op_4735_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_4735_end_mask_0 = const()[name = string("op_4735_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_4735_cast_fp16 = slice_by_index(begin = var_4735_begin_0, end = concat_11, end_mask = var_4735_end_mask_0, x = var_4732_cast_fp16)[name = string("op_4735_cast_fp16")]; + tensor var_4737_shape_cast_fp16 = shape(x = var_4730_cast_fp16)[name = string("op_4737_shape_cast_fp16")]; + int32 gather_463 = const()[name = string("gather_463"), val = int32(1)]; + int32 gather_464 = const()[name = string("gather_464"), val = int32(8)]; + int32 gather_465_axis_0 = const()[name = string("gather_465_axis_0"), val = int32(0)]; + int32 gather_465_batch_dims_0 = const()[name = string("gather_465_batch_dims_0"), val = int32(0)]; + bool gather_465_validate_indices_0 = const()[name = string("gather_465_validate_indices_0"), val = bool(false)]; + string var_4737_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_4737_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_465_to_uint16 = const()[name = string("select_465_to_uint16"), val = uint16(2)]; + tensor var_4737_shape_cast_fp16_to_uint16 = cast(dtype = var_4737_shape_cast_fp16_to_uint16_dtype_0, x = var_4737_shape_cast_fp16)[name = string("cast_22")]; + uint16 gather_465_cast_uint16 = gather(axis = gather_465_axis_0, batch_dims = gather_465_batch_dims_0, indices = select_465_to_uint16, validate_indices = gather_465_validate_indices_0, x = var_4737_shape_cast_fp16_to_uint16)[name = string("gather_465_cast_uint16")]; + string gather_465_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_465_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_466 = const()[name = string("gather_466"), val = int32(128)]; + tensor var_4744_axes_0 = const()[name = string("op_4744_axes_0"), val = tensor([2])]; + tensor var_4744_cast_fp16 = expand_dims(axes = var_4744_axes_0, x = var_4730_cast_fp16)[name = string("op_4744_cast_fp16")]; + tensor shape_517_cast_fp16 = shape(x = var_4744_cast_fp16)[name = string("shape_517_cast_fp16")]; + int32 concat_488_axis_0 = const()[name = string("concat_488_axis_0"), val = int32(0)]; + bool concat_488_interleave_0 = const()[name = string("concat_488_interleave_0"), val = bool(false)]; + int32 gather_465_cast_uint16_to_int32 = cast(dtype = gather_465_cast_uint16_to_int32_dtype_0, x = gather_465_cast_uint16)[name = string("cast_21")]; + tensor concat_488 = concat(axis = concat_488_axis_0, interleave = concat_488_interleave_0, values = (gather_463, gather_464, var_81, gather_465_cast_uint16_to_int32, gather_466))[name = string("concat_488")]; + tensor real_div_50 = real_div(x = concat_488, y = shape_517_cast_fp16)[name = string("real_div_50")]; + tensor hidden_states_761_cast_fp16 = tile(reps = real_div_50, x = var_4744_cast_fp16)[name = string("hidden_states_761_cast_fp16")]; + tensor concat_489x = const()[name = string("concat_489x"), val = tensor([1, 24, -1, 128])]; + tensor key_states_103_cast_fp16 = reshape(shape = concat_489x, x = hidden_states_761_cast_fp16)[name = string("key_states_103_cast_fp16")]; + tensor var_4754_shape_cast_fp16 = shape(x = var_4735_cast_fp16)[name = string("op_4754_shape_cast_fp16")]; + int32 gather_467 = const()[name = string("gather_467"), val = int32(1)]; + int32 gather_468 = const()[name = string("gather_468"), val = int32(8)]; + int32 gather_469_axis_0 = const()[name = string("gather_469_axis_0"), val = int32(0)]; + int32 gather_469_batch_dims_0 = const()[name = string("gather_469_batch_dims_0"), val = int32(0)]; + bool gather_469_validate_indices_0 = const()[name = string("gather_469_validate_indices_0"), val = bool(false)]; + string var_4754_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_4754_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_469_to_uint16 = const()[name = string("select_469_to_uint16"), val = uint16(2)]; + tensor var_4754_shape_cast_fp16_to_uint16 = cast(dtype = var_4754_shape_cast_fp16_to_uint16_dtype_0, x = var_4754_shape_cast_fp16)[name = string("cast_20")]; + uint16 gather_469_cast_uint16 = gather(axis = gather_469_axis_0, batch_dims = gather_469_batch_dims_0, indices = select_469_to_uint16, validate_indices = gather_469_validate_indices_0, x = var_4754_shape_cast_fp16_to_uint16)[name = string("gather_469_cast_uint16")]; + string gather_469_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_469_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_470 = const()[name = string("gather_470"), val = int32(128)]; + tensor var_4761_axes_0 = const()[name = string("op_4761_axes_0"), val = tensor([2])]; + tensor var_4761_cast_fp16 = expand_dims(axes = var_4761_axes_0, x = var_4735_cast_fp16)[name = string("op_4761_cast_fp16")]; + tensor shape_522_cast_fp16 = shape(x = var_4761_cast_fp16)[name = string("shape_522_cast_fp16")]; + int32 concat_490_axis_0 = const()[name = string("concat_490_axis_0"), val = int32(0)]; + bool concat_490_interleave_0 = const()[name = string("concat_490_interleave_0"), val = bool(false)]; + int32 gather_469_cast_uint16_to_int32 = cast(dtype = gather_469_cast_uint16_to_int32_dtype_0, x = gather_469_cast_uint16)[name = string("cast_19")]; + tensor concat_490 = concat(axis = concat_490_axis_0, interleave = concat_490_interleave_0, values = (gather_467, gather_468, var_81, gather_469_cast_uint16_to_int32, gather_470))[name = string("concat_490")]; + tensor real_div_51 = real_div(x = concat_490, y = shape_522_cast_fp16)[name = string("real_div_51")]; + tensor hidden_states_765_cast_fp16 = tile(reps = real_div_51, x = var_4761_cast_fp16)[name = string("hidden_states_765_cast_fp16")]; + tensor concat_491x = const()[name = string("concat_491x"), val = tensor([1, 24, -1, 128])]; + tensor value_states_103_cast_fp16 = reshape(shape = concat_491x, x = hidden_states_765_cast_fp16)[name = string("value_states_103_cast_fp16")]; + tensor var_4771_shape_cast_fp16 = shape(x = key_states_103_cast_fp16)[name = string("op_4771_shape_cast_fp16")]; + int32 gather_471_axis_0 = const()[name = string("gather_471_axis_0"), val = int32(0)]; + int32 gather_471_batch_dims_0 = const()[name = string("gather_471_batch_dims_0"), val = int32(0)]; + bool gather_471_validate_indices_0 = const()[name = string("gather_471_validate_indices_0"), val = bool(false)]; + string var_4771_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_4771_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_471_to_uint16 = const()[name = string("select_471_to_uint16"), val = uint16(2)]; + tensor var_4771_shape_cast_fp16_to_uint16 = cast(dtype = var_4771_shape_cast_fp16_to_uint16_dtype_0, x = var_4771_shape_cast_fp16)[name = string("cast_18")]; + uint16 gather_471_cast_uint16 = gather(axis = gather_471_axis_0, batch_dims = gather_471_batch_dims_0, indices = select_471_to_uint16, validate_indices = gather_471_validate_indices_0, x = var_4771_shape_cast_fp16_to_uint16)[name = string("gather_471_cast_uint16")]; + string gather_471_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_471_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 concat_492_values0_0 = const()[name = string("concat_492_values0_0"), val = int32(1)]; + int32 concat_492_values1_0 = const()[name = string("concat_492_values1_0"), val = int32(1)]; + int32 concat_492_values2_0 = const()[name = string("concat_492_values2_0"), val = int32(0)]; + int32 concat_492_axis_0 = const()[name = string("concat_492_axis_0"), val = int32(0)]; + bool concat_492_interleave_0 = const()[name = string("concat_492_interleave_0"), val = bool(false)]; + int32 gather_471_cast_uint16_to_int32 = cast(dtype = gather_471_cast_uint16_to_int32_dtype_0, x = gather_471_cast_uint16)[name = string("cast_17")]; + tensor concat_492 = concat(axis = concat_492_axis_0, interleave = concat_492_interleave_0, values = (concat_492_values0_0, concat_492_values1_0, concat_492_values2_0, gather_471_cast_uint16_to_int32))[name = string("concat_492")]; + tensor causal_mask_53_begin_0 = const()[name = string("causal_mask_53_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor causal_mask_53_end_mask_0 = const()[name = string("causal_mask_53_end_mask_0"), val = tensor([true, true, true, false])]; + tensor causal_mask_53_cast_fp16 = slice_by_index(begin = causal_mask_53_begin_0, end = concat_492, end_mask = causal_mask_53_end_mask_0, x = causal_mask)[name = string("causal_mask_53_cast_fp16")]; + tensor attn_output_101_cast_fp16 = scaled_dot_product_attention(attn_mask = causal_mask_53_cast_fp16, key = key_states_103_cast_fp16, query = query_states_103_cast_fp16, value = value_states_103_cast_fp16)[name = string("attn_output_101_cast_fp16")]; + tensor var_4777_perm_0 = const()[name = string("op_4777_perm_0"), val = tensor([0, 2, 1, 3])]; + int32 concat_493_axis_0 = const()[name = string("concat_493_axis_0"), val = int32(0)]; + bool concat_493_interleave_0 = const()[name = string("concat_493_interleave_0"), val = bool(false)]; + int32 gather_455_cast_uint16_to_int32 = cast(dtype = gather_455_cast_uint16_to_int32_dtype_0, x = gather_455_cast_uint16)[name = string("cast_16")]; + tensor concat_493 = concat(axis = concat_493_axis_0, interleave = concat_493_interleave_0, values = (gather_454, gather_455_cast_uint16_to_int32, var_72))[name = string("concat_493")]; + tensor var_4777_cast_fp16 = transpose(perm = var_4777_perm_0, x = attn_output_101_cast_fp16)[name = string("transpose_8")]; + tensor input_201_cast_fp16 = reshape(shape = concat_493, x = var_4777_cast_fp16)[name = string("input_201_cast_fp16")]; + tensor model_model_layers_25_self_attn_o_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1646415872))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1651134528))))[name = string("model_model_layers_25_self_attn_o_proj_weight_to_fp16_quantized")]; + tensor linear_178_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_25_self_attn_o_proj_weight_to_fp16_quantized, x = input_201_cast_fp16)[name = string("linear_178_cast_fp16")]; + tensor hidden_states_769_cast_fp16 = add(x = hidden_states_749_cast_fp16, y = linear_178_cast_fp16)[name = string("hidden_states_769_cast_fp16")]; + fp16 var_78_promoted_51_to_fp16 = const()[name = string("op_78_promoted_51_to_fp16"), val = fp16(0x1p+1)]; + tensor var_4786_cast_fp16 = pow(x = hidden_states_769_cast_fp16, y = var_78_promoted_51_to_fp16)[name = string("op_4786_cast_fp16")]; + tensor variance_103_axes_0 = const()[name = string("variance_103_axes_0"), val = tensor([-1])]; + bool variance_103_keep_dims_0 = const()[name = string("variance_103_keep_dims_0"), val = bool(true)]; + tensor variance_103_cast_fp16 = reduce_mean(axes = variance_103_axes_0, keep_dims = variance_103_keep_dims_0, x = var_4786_cast_fp16)[name = string("variance_103_cast_fp16")]; + fp16 var_4789_to_fp16 = const()[name = string("op_4789_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_4790_cast_fp16 = add(x = variance_103_cast_fp16, y = var_4789_to_fp16)[name = string("op_4790_cast_fp16")]; + fp32 var_4791_epsilon_0 = const()[name = string("op_4791_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_4791_cast_fp16 = rsqrt(epsilon = var_4791_epsilon_0, x = var_4790_cast_fp16)[name = string("op_4791_cast_fp16")]; + tensor hidden_states_773_cast_fp16 = mul(x = hidden_states_769_cast_fp16, y = var_4791_cast_fp16)[name = string("hidden_states_773_cast_fp16")]; + tensor model_model_layers_25_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_25_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1651724416)))]; + tensor input_203_cast_fp16 = mul(x = model_model_layers_25_post_attention_layernorm_weight_to_fp16, y = hidden_states_773_cast_fp16)[name = string("input_203_cast_fp16")]; + tensor model_model_layers_25_mlp_gate_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1651730624))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1664313600))))[name = string("model_model_layers_25_mlp_gate_proj_weight_to_fp16_quantized")]; + tensor linear_179_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_25_mlp_gate_proj_weight_to_fp16_quantized, x = input_203_cast_fp16)[name = string("linear_179_cast_fp16")]; + tensor var_4803_cast_fp16 = silu(x = linear_179_cast_fp16)[name = string("op_4803_cast_fp16")]; + tensor model_model_layers_25_mlp_up_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1665886528))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1678469504))))[name = string("model_model_layers_25_mlp_up_proj_weight_to_fp16_quantized")]; + tensor linear_180_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_25_mlp_up_proj_weight_to_fp16_quantized, x = input_203_cast_fp16)[name = string("linear_180_cast_fp16")]; + tensor input_207_cast_fp16 = mul(x = var_4803_cast_fp16, y = linear_180_cast_fp16)[name = string("input_207_cast_fp16")]; + tensor model_model_layers_25_mlp_down_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1680042432))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1692625408))))[name = string("model_model_layers_25_mlp_down_proj_weight_to_fp16_quantized")]; + tensor linear_181_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_25_mlp_down_proj_weight_to_fp16_quantized, x = input_207_cast_fp16)[name = string("linear_181_cast_fp16")]; + tensor hidden_states_779_cast_fp16 = add(x = hidden_states_769_cast_fp16, y = linear_181_cast_fp16)[name = string("hidden_states_779_cast_fp16")]; + fp16 var_78_promoted_52_to_fp16 = const()[name = string("op_78_promoted_52_to_fp16"), val = fp16(0x1p+1)]; + tensor var_4816_cast_fp16 = pow(x = hidden_states_779_cast_fp16, y = var_78_promoted_52_to_fp16)[name = string("op_4816_cast_fp16")]; + tensor variance_105_axes_0 = const()[name = string("variance_105_axes_0"), val = tensor([-1])]; + bool variance_105_keep_dims_0 = const()[name = string("variance_105_keep_dims_0"), val = bool(true)]; + tensor variance_105_cast_fp16 = reduce_mean(axes = variance_105_axes_0, keep_dims = variance_105_keep_dims_0, x = var_4816_cast_fp16)[name = string("variance_105_cast_fp16")]; + fp16 var_4819_to_fp16 = const()[name = string("op_4819_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_4820_cast_fp16 = add(x = variance_105_cast_fp16, y = var_4819_to_fp16)[name = string("op_4820_cast_fp16")]; + fp32 var_4821_epsilon_0 = const()[name = string("op_4821_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_4821_cast_fp16 = rsqrt(epsilon = var_4821_epsilon_0, x = var_4820_cast_fp16)[name = string("op_4821_cast_fp16")]; + tensor hidden_states_783_cast_fp16 = mul(x = hidden_states_779_cast_fp16, y = var_4821_cast_fp16)[name = string("hidden_states_783_cast_fp16")]; + tensor model_model_layers_26_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_26_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1694198336)))]; + tensor hidden_states_787_cast_fp16 = mul(x = model_model_layers_26_input_layernorm_weight_to_fp16, y = hidden_states_783_cast_fp16)[name = string("hidden_states_787_cast_fp16")]; + tensor var_4832_shape_cast_fp16 = shape(x = hidden_states_787_cast_fp16)[name = string("op_4832_shape_cast_fp16")]; + int32 gather_472 = const()[name = string("gather_472"), val = int32(1)]; + int32 gather_473_axis_0 = const()[name = string("gather_473_axis_0"), val = int32(0)]; + int32 gather_473_batch_dims_0 = const()[name = string("gather_473_batch_dims_0"), val = int32(0)]; + bool gather_473_validate_indices_0 = const()[name = string("gather_473_validate_indices_0"), val = bool(false)]; + string var_4832_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_4832_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_473_to_uint16 = const()[name = string("select_473_to_uint16"), val = uint16(1)]; + tensor var_4832_shape_cast_fp16_to_uint16 = cast(dtype = var_4832_shape_cast_fp16_to_uint16_dtype_0, x = var_4832_shape_cast_fp16)[name = string("cast_15")]; + uint16 gather_473_cast_uint16 = gather(axis = gather_473_axis_0, batch_dims = gather_473_batch_dims_0, indices = select_473_to_uint16, validate_indices = gather_473_validate_indices_0, x = var_4832_shape_cast_fp16_to_uint16)[name = string("gather_473_cast_uint16")]; + string gather_473_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_473_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor model_model_layers_26_self_attn_q_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1694204544))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1698923200))))[name = string("model_model_layers_26_self_attn_q_proj_weight_to_fp16_quantized")]; + tensor linear_182_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_26_self_attn_q_proj_weight_to_fp16_quantized, x = hidden_states_787_cast_fp16)[name = string("linear_182_cast_fp16")]; + tensor model_model_layers_26_self_attn_k_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1699513088))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1701086016))))[name = string("model_model_layers_26_self_attn_k_proj_weight_to_fp16_quantized")]; + tensor linear_183_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_26_self_attn_k_proj_weight_to_fp16_quantized, x = hidden_states_787_cast_fp16)[name = string("linear_183_cast_fp16")]; + tensor model_model_layers_26_self_attn_v_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1701282688))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1702855616))))[name = string("model_model_layers_26_self_attn_v_proj_weight_to_fp16_quantized")]; + tensor linear_184_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_26_self_attn_v_proj_weight_to_fp16_quantized, x = hidden_states_787_cast_fp16)[name = string("linear_184_cast_fp16")]; + tensor concat_494x = const()[name = string("concat_494x"), val = tensor([1, -1, 24, 128])]; + tensor var_4841_cast_fp16 = reshape(shape = concat_494x, x = linear_182_cast_fp16)[name = string("op_4841_cast_fp16")]; + tensor q_53_perm_0 = const()[name = string("q_53_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_495x = const()[name = string("concat_495x"), val = tensor([1, -1, 8, 128])]; + tensor var_4844_cast_fp16 = reshape(shape = concat_495x, x = linear_183_cast_fp16)[name = string("op_4844_cast_fp16")]; + tensor k_53_perm_0 = const()[name = string("k_53_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_496x = const()[name = string("concat_496x"), val = tensor([1, -1, 8, 128])]; + tensor var_4847_cast_fp16 = reshape(shape = concat_496x, x = linear_184_cast_fp16)[name = string("op_4847_cast_fp16")]; + tensor v_state_53_perm_0 = const()[name = string("v_state_53_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor q_53_cast_fp16 = transpose(perm = q_53_perm_0, x = var_4841_cast_fp16)[name = string("transpose_7")]; + tensor var_4851_cast_fp16 = mul(x = q_53_cast_fp16, y = cos_7_cast_fp16)[name = string("op_4851_cast_fp16")]; + tensor x1_105_begin_0 = const()[name = string("x1_105_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_105_end_0 = const()[name = string("x1_105_end_0"), val = tensor([1, 24, 0, 64])]; + tensor x1_105_end_mask_0 = const()[name = string("x1_105_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_105_cast_fp16 = slice_by_index(begin = x1_105_begin_0, end = x1_105_end_0, end_mask = x1_105_end_mask_0, x = q_53_cast_fp16)[name = string("x1_105_cast_fp16")]; + tensor x2_105_begin_0 = const()[name = string("x2_105_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_105_end_0 = const()[name = string("x2_105_end_0"), val = tensor([1, 24, 0, 128])]; + tensor x2_105_end_mask_0 = const()[name = string("x2_105_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_105_cast_fp16 = slice_by_index(begin = x2_105_begin_0, end = x2_105_end_0, end_mask = x2_105_end_mask_0, x = q_53_cast_fp16)[name = string("x2_105_cast_fp16")]; + fp16 const_55_promoted_to_fp16 = const()[name = string("const_55_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_4862_cast_fp16 = mul(x = x2_105_cast_fp16, y = const_55_promoted_to_fp16)[name = string("op_4862_cast_fp16")]; + bool var_4864_interleave_0 = const()[name = string("op_4864_interleave_0"), val = bool(false)]; + tensor var_4864_cast_fp16 = concat(axis = var_72, interleave = var_4864_interleave_0, values = (var_4862_cast_fp16, x1_105_cast_fp16))[name = string("op_4864_cast_fp16")]; + tensor var_4865_cast_fp16 = mul(x = var_4864_cast_fp16, y = sin_7_cast_fp16)[name = string("op_4865_cast_fp16")]; + tensor query_states_107_cast_fp16 = add(x = var_4851_cast_fp16, y = var_4865_cast_fp16)[name = string("query_states_107_cast_fp16")]; + tensor k_53_cast_fp16 = transpose(perm = k_53_perm_0, x = var_4844_cast_fp16)[name = string("transpose_6")]; + tensor var_4867_cast_fp16 = mul(x = k_53_cast_fp16, y = cos_7_cast_fp16)[name = string("op_4867_cast_fp16")]; + tensor x1_107_begin_0 = const()[name = string("x1_107_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_107_end_0 = const()[name = string("x1_107_end_0"), val = tensor([1, 8, 0, 64])]; + tensor x1_107_end_mask_0 = const()[name = string("x1_107_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_107_cast_fp16 = slice_by_index(begin = x1_107_begin_0, end = x1_107_end_0, end_mask = x1_107_end_mask_0, x = k_53_cast_fp16)[name = string("x1_107_cast_fp16")]; + tensor x2_107_begin_0 = const()[name = string("x2_107_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_107_end_0 = const()[name = string("x2_107_end_0"), val = tensor([1, 8, 0, 128])]; + tensor x2_107_end_mask_0 = const()[name = string("x2_107_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_107_cast_fp16 = slice_by_index(begin = x2_107_begin_0, end = x2_107_end_0, end_mask = x2_107_end_mask_0, x = k_53_cast_fp16)[name = string("x2_107_cast_fp16")]; + fp16 const_56_promoted_to_fp16 = const()[name = string("const_56_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_4878_cast_fp16 = mul(x = x2_107_cast_fp16, y = const_56_promoted_to_fp16)[name = string("op_4878_cast_fp16")]; + bool var_4880_interleave_0 = const()[name = string("op_4880_interleave_0"), val = bool(false)]; + tensor var_4880_cast_fp16 = concat(axis = var_72, interleave = var_4880_interleave_0, values = (var_4878_cast_fp16, x1_107_cast_fp16))[name = string("op_4880_cast_fp16")]; + tensor var_4881_cast_fp16 = mul(x = var_4880_cast_fp16, y = sin_7_cast_fp16)[name = string("op_4881_cast_fp16")]; + tensor k_state_53_cast_fp16 = add(x = var_4867_cast_fp16, y = var_4881_cast_fp16)[name = string("k_state_53_cast_fp16")]; + tensor expand_dims_312 = const()[name = string("expand_dims_312"), val = tensor([0])]; + tensor expand_dims_313 = const()[name = string("expand_dims_313"), val = tensor([0])]; + tensor expand_dims_315 = const()[name = string("expand_dims_315"), val = tensor([0])]; + tensor concat_499_values0_0 = const()[name = string("concat_499_values0_0"), val = tensor([26])]; + int32 concat_499_axis_0 = const()[name = string("concat_499_axis_0"), val = int32(0)]; + bool concat_499_interleave_0 = const()[name = string("concat_499_interleave_0"), val = bool(false)]; + tensor concat_499 = concat(axis = concat_499_axis_0, interleave = concat_499_interleave_0, values = (concat_499_values0_0, expand_dims_312, expand_dims_313, expand_dims_2, expand_dims_315))[name = string("concat_499")]; + tensor key_cache_internal_tensor_assign_27_stride_0 = const()[name = string("key_cache_internal_tensor_assign_27_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor key_cache_internal_tensor_assign_27_begin_mask_0 = const()[name = string("key_cache_internal_tensor_assign_27_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_27_end_mask_0 = const()[name = string("key_cache_internal_tensor_assign_27_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor key_cache_internal_tensor_assign_27_squeeze_mask_0 = const()[name = string("key_cache_internal_tensor_assign_27_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_27_cast_fp16 = slice_update(begin = concat_499, begin_mask = key_cache_internal_tensor_assign_27_begin_mask_0, end = concat_6, end_mask = key_cache_internal_tensor_assign_27_end_mask_0, squeeze_mask = key_cache_internal_tensor_assign_27_squeeze_mask_0, stride = key_cache_internal_tensor_assign_27_stride_0, update = k_state_53_cast_fp16, x = coreml_update_state_106)[name = string("key_cache_internal_tensor_assign_27_cast_fp16")]; + write_state(data = key_cache_internal_tensor_assign_27_cast_fp16, input = key_cache)[name = string("coreml_update_state_108_write_state")]; + tensor coreml_update_state_108 = read_state(input = key_cache)[name = string("coreml_update_state_108")]; + tensor value_cache_internal_tensor_assign_27_stride_0 = const()[name = string("value_cache_internal_tensor_assign_27_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor value_cache_internal_tensor_assign_27_begin_mask_0 = const()[name = string("value_cache_internal_tensor_assign_27_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor value_cache_internal_tensor_assign_27_end_mask_0 = const()[name = string("value_cache_internal_tensor_assign_27_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor value_cache_internal_tensor_assign_27_squeeze_mask_0 = const()[name = string("value_cache_internal_tensor_assign_27_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor v_state_53_cast_fp16 = transpose(perm = v_state_53_perm_0, x = var_4847_cast_fp16)[name = string("transpose_5")]; + tensor value_cache_internal_tensor_assign_27_cast_fp16 = slice_update(begin = concat_499, begin_mask = value_cache_internal_tensor_assign_27_begin_mask_0, end = concat_6, end_mask = value_cache_internal_tensor_assign_27_end_mask_0, squeeze_mask = value_cache_internal_tensor_assign_27_squeeze_mask_0, stride = value_cache_internal_tensor_assign_27_stride_0, update = v_state_53_cast_fp16, x = coreml_update_state_107)[name = string("value_cache_internal_tensor_assign_27_cast_fp16")]; + write_state(data = value_cache_internal_tensor_assign_27_cast_fp16, input = value_cache)[name = string("coreml_update_state_109_write_state")]; + tensor coreml_update_state_109 = read_state(input = value_cache)[name = string("coreml_update_state_109")]; + tensor var_4904_begin_0 = const()[name = string("op_4904_begin_0"), val = tensor([26, 0, 0, 0, 0])]; + tensor var_4904_end_0 = const()[name = string("op_4904_end_0"), val = tensor([27, 1, 8, 2048, 128])]; + tensor var_4904_end_mask_0 = const()[name = string("op_4904_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_4904_squeeze_mask_0 = const()[name = string("op_4904_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_4904_cast_fp16 = slice_by_index(begin = var_4904_begin_0, end = var_4904_end_0, end_mask = var_4904_end_mask_0, squeeze_mask = var_4904_squeeze_mask_0, x = coreml_update_state_108)[name = string("op_4904_cast_fp16")]; + tensor var_4907_begin_0 = const()[name = string("op_4907_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_4907_end_mask_0 = const()[name = string("op_4907_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_4907_cast_fp16 = slice_by_index(begin = var_4907_begin_0, end = concat_11, end_mask = var_4907_end_mask_0, x = var_4904_cast_fp16)[name = string("op_4907_cast_fp16")]; + tensor var_4909_begin_0 = const()[name = string("op_4909_begin_0"), val = tensor([26, 0, 0, 0, 0])]; + tensor var_4909_end_0 = const()[name = string("op_4909_end_0"), val = tensor([27, 1, 8, 2048, 128])]; + tensor var_4909_end_mask_0 = const()[name = string("op_4909_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_4909_squeeze_mask_0 = const()[name = string("op_4909_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_4909_cast_fp16 = slice_by_index(begin = var_4909_begin_0, end = var_4909_end_0, end_mask = var_4909_end_mask_0, squeeze_mask = var_4909_squeeze_mask_0, x = coreml_update_state_109)[name = string("op_4909_cast_fp16")]; + tensor var_4912_begin_0 = const()[name = string("op_4912_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_4912_end_mask_0 = const()[name = string("op_4912_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_4912_cast_fp16 = slice_by_index(begin = var_4912_begin_0, end = concat_11, end_mask = var_4912_end_mask_0, x = var_4909_cast_fp16)[name = string("op_4912_cast_fp16")]; + tensor var_4914_shape_cast_fp16 = shape(x = var_4907_cast_fp16)[name = string("op_4914_shape_cast_fp16")]; + int32 gather_481 = const()[name = string("gather_481"), val = int32(1)]; + int32 gather_482 = const()[name = string("gather_482"), val = int32(8)]; + int32 gather_483_axis_0 = const()[name = string("gather_483_axis_0"), val = int32(0)]; + int32 gather_483_batch_dims_0 = const()[name = string("gather_483_batch_dims_0"), val = int32(0)]; + bool gather_483_validate_indices_0 = const()[name = string("gather_483_validate_indices_0"), val = bool(false)]; + string var_4914_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_4914_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_483_to_uint16 = const()[name = string("select_483_to_uint16"), val = uint16(2)]; + tensor var_4914_shape_cast_fp16_to_uint16 = cast(dtype = var_4914_shape_cast_fp16_to_uint16_dtype_0, x = var_4914_shape_cast_fp16)[name = string("cast_14")]; + uint16 gather_483_cast_uint16 = gather(axis = gather_483_axis_0, batch_dims = gather_483_batch_dims_0, indices = select_483_to_uint16, validate_indices = gather_483_validate_indices_0, x = var_4914_shape_cast_fp16_to_uint16)[name = string("gather_483_cast_uint16")]; + string gather_483_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_483_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_484 = const()[name = string("gather_484"), val = int32(128)]; + tensor var_4921_axes_0 = const()[name = string("op_4921_axes_0"), val = tensor([2])]; + tensor var_4921_cast_fp16 = expand_dims(axes = var_4921_axes_0, x = var_4907_cast_fp16)[name = string("op_4921_cast_fp16")]; + tensor shape_537_cast_fp16 = shape(x = var_4921_cast_fp16)[name = string("shape_537_cast_fp16")]; + int32 concat_507_axis_0 = const()[name = string("concat_507_axis_0"), val = int32(0)]; + bool concat_507_interleave_0 = const()[name = string("concat_507_interleave_0"), val = bool(false)]; + int32 gather_483_cast_uint16_to_int32 = cast(dtype = gather_483_cast_uint16_to_int32_dtype_0, x = gather_483_cast_uint16)[name = string("cast_13")]; + tensor concat_507 = concat(axis = concat_507_axis_0, interleave = concat_507_interleave_0, values = (gather_481, gather_482, var_81, gather_483_cast_uint16_to_int32, gather_484))[name = string("concat_507")]; + tensor real_div_52 = real_div(x = concat_507, y = shape_537_cast_fp16)[name = string("real_div_52")]; + tensor hidden_states_791_cast_fp16 = tile(reps = real_div_52, x = var_4921_cast_fp16)[name = string("hidden_states_791_cast_fp16")]; + tensor concat_508x = const()[name = string("concat_508x"), val = tensor([1, 24, -1, 128])]; + tensor key_states_107_cast_fp16 = reshape(shape = concat_508x, x = hidden_states_791_cast_fp16)[name = string("key_states_107_cast_fp16")]; + tensor var_4931_shape_cast_fp16 = shape(x = var_4912_cast_fp16)[name = string("op_4931_shape_cast_fp16")]; + int32 gather_485 = const()[name = string("gather_485"), val = int32(1)]; + int32 gather_486 = const()[name = string("gather_486"), val = int32(8)]; + int32 gather_487_axis_0 = const()[name = string("gather_487_axis_0"), val = int32(0)]; + int32 gather_487_batch_dims_0 = const()[name = string("gather_487_batch_dims_0"), val = int32(0)]; + bool gather_487_validate_indices_0 = const()[name = string("gather_487_validate_indices_0"), val = bool(false)]; + string var_4931_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_4931_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_487_to_uint16 = const()[name = string("select_487_to_uint16"), val = uint16(2)]; + tensor var_4931_shape_cast_fp16_to_uint16 = cast(dtype = var_4931_shape_cast_fp16_to_uint16_dtype_0, x = var_4931_shape_cast_fp16)[name = string("cast_12")]; + uint16 gather_487_cast_uint16 = gather(axis = gather_487_axis_0, batch_dims = gather_487_batch_dims_0, indices = select_487_to_uint16, validate_indices = gather_487_validate_indices_0, x = var_4931_shape_cast_fp16_to_uint16)[name = string("gather_487_cast_uint16")]; + string gather_487_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_487_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_488 = const()[name = string("gather_488"), val = int32(128)]; + tensor var_4938_axes_0 = const()[name = string("op_4938_axes_0"), val = tensor([2])]; + tensor var_4938_cast_fp16 = expand_dims(axes = var_4938_axes_0, x = var_4912_cast_fp16)[name = string("op_4938_cast_fp16")]; + tensor shape_542_cast_fp16 = shape(x = var_4938_cast_fp16)[name = string("shape_542_cast_fp16")]; + int32 concat_509_axis_0 = const()[name = string("concat_509_axis_0"), val = int32(0)]; + bool concat_509_interleave_0 = const()[name = string("concat_509_interleave_0"), val = bool(false)]; + int32 gather_487_cast_uint16_to_int32 = cast(dtype = gather_487_cast_uint16_to_int32_dtype_0, x = gather_487_cast_uint16)[name = string("cast_11")]; + tensor concat_509 = concat(axis = concat_509_axis_0, interleave = concat_509_interleave_0, values = (gather_485, gather_486, var_81, gather_487_cast_uint16_to_int32, gather_488))[name = string("concat_509")]; + tensor real_div_53 = real_div(x = concat_509, y = shape_542_cast_fp16)[name = string("real_div_53")]; + tensor hidden_states_795_cast_fp16 = tile(reps = real_div_53, x = var_4938_cast_fp16)[name = string("hidden_states_795_cast_fp16")]; + tensor concat_510x = const()[name = string("concat_510x"), val = tensor([1, 24, -1, 128])]; + tensor value_states_107_cast_fp16 = reshape(shape = concat_510x, x = hidden_states_795_cast_fp16)[name = string("value_states_107_cast_fp16")]; + tensor var_4948_shape_cast_fp16 = shape(x = key_states_107_cast_fp16)[name = string("op_4948_shape_cast_fp16")]; + int32 gather_489_axis_0 = const()[name = string("gather_489_axis_0"), val = int32(0)]; + int32 gather_489_batch_dims_0 = const()[name = string("gather_489_batch_dims_0"), val = int32(0)]; + bool gather_489_validate_indices_0 = const()[name = string("gather_489_validate_indices_0"), val = bool(false)]; + string var_4948_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_4948_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_489_to_uint16 = const()[name = string("select_489_to_uint16"), val = uint16(2)]; + tensor var_4948_shape_cast_fp16_to_uint16 = cast(dtype = var_4948_shape_cast_fp16_to_uint16_dtype_0, x = var_4948_shape_cast_fp16)[name = string("cast_10")]; + uint16 gather_489_cast_uint16 = gather(axis = gather_489_axis_0, batch_dims = gather_489_batch_dims_0, indices = select_489_to_uint16, validate_indices = gather_489_validate_indices_0, x = var_4948_shape_cast_fp16_to_uint16)[name = string("gather_489_cast_uint16")]; + string gather_489_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_489_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 concat_511_values0_0 = const()[name = string("concat_511_values0_0"), val = int32(1)]; + int32 concat_511_values1_0 = const()[name = string("concat_511_values1_0"), val = int32(1)]; + int32 concat_511_values2_0 = const()[name = string("concat_511_values2_0"), val = int32(0)]; + int32 concat_511_axis_0 = const()[name = string("concat_511_axis_0"), val = int32(0)]; + bool concat_511_interleave_0 = const()[name = string("concat_511_interleave_0"), val = bool(false)]; + int32 gather_489_cast_uint16_to_int32 = cast(dtype = gather_489_cast_uint16_to_int32_dtype_0, x = gather_489_cast_uint16)[name = string("cast_9")]; + tensor concat_511 = concat(axis = concat_511_axis_0, interleave = concat_511_interleave_0, values = (concat_511_values0_0, concat_511_values1_0, concat_511_values2_0, gather_489_cast_uint16_to_int32))[name = string("concat_511")]; + tensor causal_mask_55_begin_0 = const()[name = string("causal_mask_55_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor causal_mask_55_end_mask_0 = const()[name = string("causal_mask_55_end_mask_0"), val = tensor([true, true, true, false])]; + tensor causal_mask_55_cast_fp16 = slice_by_index(begin = causal_mask_55_begin_0, end = concat_511, end_mask = causal_mask_55_end_mask_0, x = causal_mask)[name = string("causal_mask_55_cast_fp16")]; + tensor attn_output_105_cast_fp16 = scaled_dot_product_attention(attn_mask = causal_mask_55_cast_fp16, key = key_states_107_cast_fp16, query = query_states_107_cast_fp16, value = value_states_107_cast_fp16)[name = string("attn_output_105_cast_fp16")]; + tensor var_4954_perm_0 = const()[name = string("op_4954_perm_0"), val = tensor([0, 2, 1, 3])]; + int32 concat_512_axis_0 = const()[name = string("concat_512_axis_0"), val = int32(0)]; + bool concat_512_interleave_0 = const()[name = string("concat_512_interleave_0"), val = bool(false)]; + int32 gather_473_cast_uint16_to_int32 = cast(dtype = gather_473_cast_uint16_to_int32_dtype_0, x = gather_473_cast_uint16)[name = string("cast_8")]; + tensor concat_512 = concat(axis = concat_512_axis_0, interleave = concat_512_interleave_0, values = (gather_472, gather_473_cast_uint16_to_int32, var_72))[name = string("concat_512")]; + tensor var_4954_cast_fp16 = transpose(perm = var_4954_perm_0, x = attn_output_105_cast_fp16)[name = string("transpose_4")]; + tensor input_209_cast_fp16 = reshape(shape = concat_512, x = var_4954_cast_fp16)[name = string("input_209_cast_fp16")]; + tensor model_model_layers_26_self_attn_o_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1703052288))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1707770944))))[name = string("model_model_layers_26_self_attn_o_proj_weight_to_fp16_quantized")]; + tensor linear_185_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_26_self_attn_o_proj_weight_to_fp16_quantized, x = input_209_cast_fp16)[name = string("linear_185_cast_fp16")]; + tensor hidden_states_799_cast_fp16 = add(x = hidden_states_779_cast_fp16, y = linear_185_cast_fp16)[name = string("hidden_states_799_cast_fp16")]; + fp16 var_78_promoted_53_to_fp16 = const()[name = string("op_78_promoted_53_to_fp16"), val = fp16(0x1p+1)]; + tensor var_4963_cast_fp16 = pow(x = hidden_states_799_cast_fp16, y = var_78_promoted_53_to_fp16)[name = string("op_4963_cast_fp16")]; + tensor variance_107_axes_0 = const()[name = string("variance_107_axes_0"), val = tensor([-1])]; + bool variance_107_keep_dims_0 = const()[name = string("variance_107_keep_dims_0"), val = bool(true)]; + tensor variance_107_cast_fp16 = reduce_mean(axes = variance_107_axes_0, keep_dims = variance_107_keep_dims_0, x = var_4963_cast_fp16)[name = string("variance_107_cast_fp16")]; + fp16 var_4966_to_fp16 = const()[name = string("op_4966_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_4967_cast_fp16 = add(x = variance_107_cast_fp16, y = var_4966_to_fp16)[name = string("op_4967_cast_fp16")]; + fp32 var_4968_epsilon_0 = const()[name = string("op_4968_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_4968_cast_fp16 = rsqrt(epsilon = var_4968_epsilon_0, x = var_4967_cast_fp16)[name = string("op_4968_cast_fp16")]; + tensor hidden_states_803_cast_fp16 = mul(x = hidden_states_799_cast_fp16, y = var_4968_cast_fp16)[name = string("hidden_states_803_cast_fp16")]; + tensor model_model_layers_26_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_26_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1708360832)))]; + tensor input_211_cast_fp16 = mul(x = model_model_layers_26_post_attention_layernorm_weight_to_fp16, y = hidden_states_803_cast_fp16)[name = string("input_211_cast_fp16")]; + tensor model_model_layers_26_mlp_gate_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1708367040))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1720950016))))[name = string("model_model_layers_26_mlp_gate_proj_weight_to_fp16_quantized")]; + tensor linear_186_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_26_mlp_gate_proj_weight_to_fp16_quantized, x = input_211_cast_fp16)[name = string("linear_186_cast_fp16")]; + tensor var_4980_cast_fp16 = silu(x = linear_186_cast_fp16)[name = string("op_4980_cast_fp16")]; + tensor model_model_layers_26_mlp_up_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1722522944))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1735105920))))[name = string("model_model_layers_26_mlp_up_proj_weight_to_fp16_quantized")]; + tensor linear_187_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_26_mlp_up_proj_weight_to_fp16_quantized, x = input_211_cast_fp16)[name = string("linear_187_cast_fp16")]; + tensor input_215_cast_fp16 = mul(x = var_4980_cast_fp16, y = linear_187_cast_fp16)[name = string("input_215_cast_fp16")]; + tensor model_model_layers_26_mlp_down_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1736678848))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1749261824))))[name = string("model_model_layers_26_mlp_down_proj_weight_to_fp16_quantized")]; + tensor linear_188_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_26_mlp_down_proj_weight_to_fp16_quantized, x = input_215_cast_fp16)[name = string("linear_188_cast_fp16")]; + tensor hidden_states_809_cast_fp16 = add(x = hidden_states_799_cast_fp16, y = linear_188_cast_fp16)[name = string("hidden_states_809_cast_fp16")]; + fp16 var_78_promoted_54_to_fp16 = const()[name = string("op_78_promoted_54_to_fp16"), val = fp16(0x1p+1)]; + tensor var_4993_cast_fp16 = pow(x = hidden_states_809_cast_fp16, y = var_78_promoted_54_to_fp16)[name = string("op_4993_cast_fp16")]; + tensor variance_109_axes_0 = const()[name = string("variance_109_axes_0"), val = tensor([-1])]; + bool variance_109_keep_dims_0 = const()[name = string("variance_109_keep_dims_0"), val = bool(true)]; + tensor variance_109_cast_fp16 = reduce_mean(axes = variance_109_axes_0, keep_dims = variance_109_keep_dims_0, x = var_4993_cast_fp16)[name = string("variance_109_cast_fp16")]; + fp16 var_4996_to_fp16 = const()[name = string("op_4996_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_4997_cast_fp16 = add(x = variance_109_cast_fp16, y = var_4996_to_fp16)[name = string("op_4997_cast_fp16")]; + fp32 var_4998_epsilon_0 = const()[name = string("op_4998_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_4998_cast_fp16 = rsqrt(epsilon = var_4998_epsilon_0, x = var_4997_cast_fp16)[name = string("op_4998_cast_fp16")]; + tensor hidden_states_813_cast_fp16 = mul(x = hidden_states_809_cast_fp16, y = var_4998_cast_fp16)[name = string("hidden_states_813_cast_fp16")]; + tensor model_model_layers_27_input_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_27_input_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1750834752)))]; + tensor hidden_states_817_cast_fp16 = mul(x = model_model_layers_27_input_layernorm_weight_to_fp16, y = hidden_states_813_cast_fp16)[name = string("hidden_states_817_cast_fp16")]; + tensor var_5009_shape_cast_fp16 = shape(x = hidden_states_817_cast_fp16)[name = string("op_5009_shape_cast_fp16")]; + int32 gather_490 = const()[name = string("gather_490"), val = int32(1)]; + int32 gather_491_axis_0 = const()[name = string("gather_491_axis_0"), val = int32(0)]; + int32 gather_491_batch_dims_0 = const()[name = string("gather_491_batch_dims_0"), val = int32(0)]; + bool gather_491_validate_indices_0 = const()[name = string("gather_491_validate_indices_0"), val = bool(false)]; + string var_5009_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_5009_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_491_to_uint16 = const()[name = string("select_491_to_uint16"), val = uint16(1)]; + tensor var_5009_shape_cast_fp16_to_uint16 = cast(dtype = var_5009_shape_cast_fp16_to_uint16_dtype_0, x = var_5009_shape_cast_fp16)[name = string("cast_7")]; + uint16 gather_491_cast_uint16 = gather(axis = gather_491_axis_0, batch_dims = gather_491_batch_dims_0, indices = select_491_to_uint16, validate_indices = gather_491_validate_indices_0, x = var_5009_shape_cast_fp16_to_uint16)[name = string("gather_491_cast_uint16")]; + string gather_491_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_491_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + tensor model_model_layers_27_self_attn_q_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1750840960))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1755559616))))[name = string("model_model_layers_27_self_attn_q_proj_weight_to_fp16_quantized")]; + tensor linear_189_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_27_self_attn_q_proj_weight_to_fp16_quantized, x = hidden_states_817_cast_fp16)[name = string("linear_189_cast_fp16")]; + tensor model_model_layers_27_self_attn_k_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1756149504))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1757722432))))[name = string("model_model_layers_27_self_attn_k_proj_weight_to_fp16_quantized")]; + tensor linear_190_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_27_self_attn_k_proj_weight_to_fp16_quantized, x = hidden_states_817_cast_fp16)[name = string("linear_190_cast_fp16")]; + tensor model_model_layers_27_self_attn_v_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1757919104))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1759492032))))[name = string("model_model_layers_27_self_attn_v_proj_weight_to_fp16_quantized")]; + tensor linear_191_cast_fp16 = linear(bias = linear_1_bias_0_to_fp16, weight = model_model_layers_27_self_attn_v_proj_weight_to_fp16_quantized, x = hidden_states_817_cast_fp16)[name = string("linear_191_cast_fp16")]; + tensor concat_513x = const()[name = string("concat_513x"), val = tensor([1, -1, 24, 128])]; + tensor var_5018_cast_fp16 = reshape(shape = concat_513x, x = linear_189_cast_fp16)[name = string("op_5018_cast_fp16")]; + tensor q_perm_0 = const()[name = string("q_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_514x = const()[name = string("concat_514x"), val = tensor([1, -1, 8, 128])]; + tensor var_5021_cast_fp16 = reshape(shape = concat_514x, x = linear_190_cast_fp16)[name = string("op_5021_cast_fp16")]; + tensor k_perm_0 = const()[name = string("k_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor concat_515x = const()[name = string("concat_515x"), val = tensor([1, -1, 8, 128])]; + tensor var_5024_cast_fp16 = reshape(shape = concat_515x, x = linear_191_cast_fp16)[name = string("op_5024_cast_fp16")]; + tensor v_state_perm_0 = const()[name = string("v_state_perm_0"), val = tensor([0, 2, 1, 3])]; + tensor q_cast_fp16 = transpose(perm = q_perm_0, x = var_5018_cast_fp16)[name = string("transpose_3")]; + tensor var_5028_cast_fp16 = mul(x = q_cast_fp16, y = cos_7_cast_fp16)[name = string("op_5028_cast_fp16")]; + tensor x1_109_begin_0 = const()[name = string("x1_109_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_109_end_0 = const()[name = string("x1_109_end_0"), val = tensor([1, 24, 0, 64])]; + tensor x1_109_end_mask_0 = const()[name = string("x1_109_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_109_cast_fp16 = slice_by_index(begin = x1_109_begin_0, end = x1_109_end_0, end_mask = x1_109_end_mask_0, x = q_cast_fp16)[name = string("x1_109_cast_fp16")]; + tensor x2_109_begin_0 = const()[name = string("x2_109_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_109_end_0 = const()[name = string("x2_109_end_0"), val = tensor([1, 24, 0, 128])]; + tensor x2_109_end_mask_0 = const()[name = string("x2_109_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_109_cast_fp16 = slice_by_index(begin = x2_109_begin_0, end = x2_109_end_0, end_mask = x2_109_end_mask_0, x = q_cast_fp16)[name = string("x2_109_cast_fp16")]; + fp16 const_57_promoted_to_fp16 = const()[name = string("const_57_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_5039_cast_fp16 = mul(x = x2_109_cast_fp16, y = const_57_promoted_to_fp16)[name = string("op_5039_cast_fp16")]; + bool var_5041_interleave_0 = const()[name = string("op_5041_interleave_0"), val = bool(false)]; + tensor var_5041_cast_fp16 = concat(axis = var_72, interleave = var_5041_interleave_0, values = (var_5039_cast_fp16, x1_109_cast_fp16))[name = string("op_5041_cast_fp16")]; + tensor var_5042_cast_fp16 = mul(x = var_5041_cast_fp16, y = sin_7_cast_fp16)[name = string("op_5042_cast_fp16")]; + tensor query_states_cast_fp16 = add(x = var_5028_cast_fp16, y = var_5042_cast_fp16)[name = string("query_states_cast_fp16")]; + tensor k_cast_fp16 = transpose(perm = k_perm_0, x = var_5021_cast_fp16)[name = string("transpose_2")]; + tensor var_5044_cast_fp16 = mul(x = k_cast_fp16, y = cos_7_cast_fp16)[name = string("op_5044_cast_fp16")]; + tensor x1_begin_0 = const()[name = string("x1_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor x1_end_0 = const()[name = string("x1_end_0"), val = tensor([1, 8, 0, 64])]; + tensor x1_end_mask_0 = const()[name = string("x1_end_mask_0"), val = tensor([true, true, true, false])]; + tensor x1_cast_fp16 = slice_by_index(begin = x1_begin_0, end = x1_end_0, end_mask = x1_end_mask_0, x = k_cast_fp16)[name = string("x1_cast_fp16")]; + tensor x2_begin_0 = const()[name = string("x2_begin_0"), val = tensor([0, 0, 0, 64])]; + tensor x2_end_0 = const()[name = string("x2_end_0"), val = tensor([1, 8, 0, 128])]; + tensor x2_end_mask_0 = const()[name = string("x2_end_mask_0"), val = tensor([true, true, true, true])]; + tensor x2_cast_fp16 = slice_by_index(begin = x2_begin_0, end = x2_end_0, end_mask = x2_end_mask_0, x = k_cast_fp16)[name = string("x2_cast_fp16")]; + fp16 const_58_promoted_to_fp16 = const()[name = string("const_58_promoted_to_fp16"), val = fp16(-0x1p+0)]; + tensor var_5055_cast_fp16 = mul(x = x2_cast_fp16, y = const_58_promoted_to_fp16)[name = string("op_5055_cast_fp16")]; + bool var_5057_interleave_0 = const()[name = string("op_5057_interleave_0"), val = bool(false)]; + tensor var_5057_cast_fp16 = concat(axis = var_72, interleave = var_5057_interleave_0, values = (var_5055_cast_fp16, x1_cast_fp16))[name = string("op_5057_cast_fp16")]; + tensor var_5058_cast_fp16 = mul(x = var_5057_cast_fp16, y = sin_7_cast_fp16)[name = string("op_5058_cast_fp16")]; + tensor k_state_cast_fp16 = add(x = var_5044_cast_fp16, y = var_5058_cast_fp16)[name = string("k_state_cast_fp16")]; + tensor expand_dims_324 = const()[name = string("expand_dims_324"), val = tensor([0])]; + tensor expand_dims_325 = const()[name = string("expand_dims_325"), val = tensor([0])]; + tensor expand_dims_327 = const()[name = string("expand_dims_327"), val = tensor([0])]; + tensor concat_518_values0_0 = const()[name = string("concat_518_values0_0"), val = tensor([27])]; + int32 concat_518_axis_0 = const()[name = string("concat_518_axis_0"), val = int32(0)]; + bool concat_518_interleave_0 = const()[name = string("concat_518_interleave_0"), val = bool(false)]; + tensor concat_518 = concat(axis = concat_518_axis_0, interleave = concat_518_interleave_0, values = (concat_518_values0_0, expand_dims_324, expand_dims_325, expand_dims_2, expand_dims_327))[name = string("concat_518")]; + tensor key_cache_internal_tensor_assign_28_stride_0 = const()[name = string("key_cache_internal_tensor_assign_28_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor key_cache_internal_tensor_assign_28_begin_mask_0 = const()[name = string("key_cache_internal_tensor_assign_28_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_28_end_mask_0 = const()[name = string("key_cache_internal_tensor_assign_28_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor key_cache_internal_tensor_assign_28_squeeze_mask_0 = const()[name = string("key_cache_internal_tensor_assign_28_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor key_cache_internal_tensor_assign_28_cast_fp16 = slice_update(begin = concat_518, begin_mask = key_cache_internal_tensor_assign_28_begin_mask_0, end = concat_6, end_mask = key_cache_internal_tensor_assign_28_end_mask_0, squeeze_mask = key_cache_internal_tensor_assign_28_squeeze_mask_0, stride = key_cache_internal_tensor_assign_28_stride_0, update = k_state_cast_fp16, x = coreml_update_state_108)[name = string("key_cache_internal_tensor_assign_28_cast_fp16")]; + write_state(data = key_cache_internal_tensor_assign_28_cast_fp16, input = key_cache)[name = string("coreml_update_state_110_write_state")]; + tensor coreml_update_state_110 = read_state(input = key_cache)[name = string("coreml_update_state_110")]; + tensor value_cache_internal_tensor_assign_28_stride_0 = const()[name = string("value_cache_internal_tensor_assign_28_stride_0"), val = tensor([1, 1, 1, 1, 1])]; + tensor value_cache_internal_tensor_assign_28_begin_mask_0 = const()[name = string("value_cache_internal_tensor_assign_28_begin_mask_0"), val = tensor([false, false, false, false, false])]; + tensor value_cache_internal_tensor_assign_28_end_mask_0 = const()[name = string("value_cache_internal_tensor_assign_28_end_mask_0"), val = tensor([false, true, false, false, true])]; + tensor value_cache_internal_tensor_assign_28_squeeze_mask_0 = const()[name = string("value_cache_internal_tensor_assign_28_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor v_state_cast_fp16 = transpose(perm = v_state_perm_0, x = var_5024_cast_fp16)[name = string("transpose_1")]; + tensor value_cache_internal_tensor_assign_28_cast_fp16 = slice_update(begin = concat_518, begin_mask = value_cache_internal_tensor_assign_28_begin_mask_0, end = concat_6, end_mask = value_cache_internal_tensor_assign_28_end_mask_0, squeeze_mask = value_cache_internal_tensor_assign_28_squeeze_mask_0, stride = value_cache_internal_tensor_assign_28_stride_0, update = v_state_cast_fp16, x = coreml_update_state_109)[name = string("value_cache_internal_tensor_assign_28_cast_fp16")]; + write_state(data = value_cache_internal_tensor_assign_28_cast_fp16, input = value_cache)[name = string("coreml_update_state_111_write_state")]; + tensor coreml_update_state_111 = read_state(input = value_cache)[name = string("coreml_update_state_111")]; + tensor var_5081_begin_0 = const()[name = string("op_5081_begin_0"), val = tensor([27, 0, 0, 0, 0])]; + tensor var_5081_end_0 = const()[name = string("op_5081_end_0"), val = tensor([28, 1, 8, 2048, 128])]; + tensor var_5081_end_mask_0 = const()[name = string("op_5081_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_5081_squeeze_mask_0 = const()[name = string("op_5081_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_5081_cast_fp16 = slice_by_index(begin = var_5081_begin_0, end = var_5081_end_0, end_mask = var_5081_end_mask_0, squeeze_mask = var_5081_squeeze_mask_0, x = coreml_update_state_110)[name = string("op_5081_cast_fp16")]; + tensor var_5084_begin_0 = const()[name = string("op_5084_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_5084_end_mask_0 = const()[name = string("op_5084_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_5084_cast_fp16 = slice_by_index(begin = var_5084_begin_0, end = concat_11, end_mask = var_5084_end_mask_0, x = var_5081_cast_fp16)[name = string("op_5084_cast_fp16")]; + tensor var_5086_begin_0 = const()[name = string("op_5086_begin_0"), val = tensor([27, 0, 0, 0, 0])]; + tensor var_5086_end_0 = const()[name = string("op_5086_end_0"), val = tensor([28, 1, 8, 2048, 128])]; + tensor var_5086_end_mask_0 = const()[name = string("op_5086_end_mask_0"), val = tensor([false, true, true, true, true])]; + tensor var_5086_squeeze_mask_0 = const()[name = string("op_5086_squeeze_mask_0"), val = tensor([true, false, false, false, false])]; + tensor var_5086_cast_fp16 = slice_by_index(begin = var_5086_begin_0, end = var_5086_end_0, end_mask = var_5086_end_mask_0, squeeze_mask = var_5086_squeeze_mask_0, x = coreml_update_state_111)[name = string("op_5086_cast_fp16")]; + tensor var_5089_begin_0 = const()[name = string("op_5089_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor var_5089_end_mask_0 = const()[name = string("op_5089_end_mask_0"), val = tensor([true, true, false, true])]; + tensor var_5089_cast_fp16 = slice_by_index(begin = var_5089_begin_0, end = concat_11, end_mask = var_5089_end_mask_0, x = var_5086_cast_fp16)[name = string("op_5089_cast_fp16")]; + tensor var_5091_shape_cast_fp16 = shape(x = var_5084_cast_fp16)[name = string("op_5091_shape_cast_fp16")]; + int32 gather_499 = const()[name = string("gather_499"), val = int32(1)]; + int32 gather_500 = const()[name = string("gather_500"), val = int32(8)]; + int32 gather_501_axis_0 = const()[name = string("gather_501_axis_0"), val = int32(0)]; + int32 gather_501_batch_dims_0 = const()[name = string("gather_501_batch_dims_0"), val = int32(0)]; + bool gather_501_validate_indices_0 = const()[name = string("gather_501_validate_indices_0"), val = bool(false)]; + string var_5091_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_5091_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_501_to_uint16 = const()[name = string("select_501_to_uint16"), val = uint16(2)]; + tensor var_5091_shape_cast_fp16_to_uint16 = cast(dtype = var_5091_shape_cast_fp16_to_uint16_dtype_0, x = var_5091_shape_cast_fp16)[name = string("cast_6")]; + uint16 gather_501_cast_uint16 = gather(axis = gather_501_axis_0, batch_dims = gather_501_batch_dims_0, indices = select_501_to_uint16, validate_indices = gather_501_validate_indices_0, x = var_5091_shape_cast_fp16_to_uint16)[name = string("gather_501_cast_uint16")]; + string gather_501_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_501_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_502 = const()[name = string("gather_502"), val = int32(128)]; + tensor var_5098_axes_0 = const()[name = string("op_5098_axes_0"), val = tensor([2])]; + tensor var_5098_cast_fp16 = expand_dims(axes = var_5098_axes_0, x = var_5084_cast_fp16)[name = string("op_5098_cast_fp16")]; + tensor shape_557_cast_fp16 = shape(x = var_5098_cast_fp16)[name = string("shape_557_cast_fp16")]; + int32 concat_526_axis_0 = const()[name = string("concat_526_axis_0"), val = int32(0)]; + bool concat_526_interleave_0 = const()[name = string("concat_526_interleave_0"), val = bool(false)]; + int32 gather_501_cast_uint16_to_int32 = cast(dtype = gather_501_cast_uint16_to_int32_dtype_0, x = gather_501_cast_uint16)[name = string("cast_5")]; + tensor concat_526 = concat(axis = concat_526_axis_0, interleave = concat_526_interleave_0, values = (gather_499, gather_500, var_81, gather_501_cast_uint16_to_int32, gather_502))[name = string("concat_526")]; + tensor real_div_54 = real_div(x = concat_526, y = shape_557_cast_fp16)[name = string("real_div_54")]; + tensor hidden_states_821_cast_fp16 = tile(reps = real_div_54, x = var_5098_cast_fp16)[name = string("hidden_states_821_cast_fp16")]; + tensor concat_527x = const()[name = string("concat_527x"), val = tensor([1, 24, -1, 128])]; + tensor key_states_cast_fp16 = reshape(shape = concat_527x, x = hidden_states_821_cast_fp16)[name = string("key_states_cast_fp16")]; + tensor var_5108_shape_cast_fp16 = shape(x = var_5089_cast_fp16)[name = string("op_5108_shape_cast_fp16")]; + int32 gather_503 = const()[name = string("gather_503"), val = int32(1)]; + int32 gather_504 = const()[name = string("gather_504"), val = int32(8)]; + int32 gather_505_axis_0 = const()[name = string("gather_505_axis_0"), val = int32(0)]; + int32 gather_505_batch_dims_0 = const()[name = string("gather_505_batch_dims_0"), val = int32(0)]; + bool gather_505_validate_indices_0 = const()[name = string("gather_505_validate_indices_0"), val = bool(false)]; + string var_5108_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_5108_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_505_to_uint16 = const()[name = string("select_505_to_uint16"), val = uint16(2)]; + tensor var_5108_shape_cast_fp16_to_uint16 = cast(dtype = var_5108_shape_cast_fp16_to_uint16_dtype_0, x = var_5108_shape_cast_fp16)[name = string("cast_4")]; + uint16 gather_505_cast_uint16 = gather(axis = gather_505_axis_0, batch_dims = gather_505_batch_dims_0, indices = select_505_to_uint16, validate_indices = gather_505_validate_indices_0, x = var_5108_shape_cast_fp16_to_uint16)[name = string("gather_505_cast_uint16")]; + string gather_505_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_505_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 gather_506 = const()[name = string("gather_506"), val = int32(128)]; + tensor var_5115_axes_0 = const()[name = string("op_5115_axes_0"), val = tensor([2])]; + tensor var_5115_cast_fp16 = expand_dims(axes = var_5115_axes_0, x = var_5089_cast_fp16)[name = string("op_5115_cast_fp16")]; + tensor shape_562_cast_fp16 = shape(x = var_5115_cast_fp16)[name = string("shape_562_cast_fp16")]; + int32 concat_528_axis_0 = const()[name = string("concat_528_axis_0"), val = int32(0)]; + bool concat_528_interleave_0 = const()[name = string("concat_528_interleave_0"), val = bool(false)]; + int32 gather_505_cast_uint16_to_int32 = cast(dtype = gather_505_cast_uint16_to_int32_dtype_0, x = gather_505_cast_uint16)[name = string("cast_3")]; + tensor concat_528 = concat(axis = concat_528_axis_0, interleave = concat_528_interleave_0, values = (gather_503, gather_504, var_81, gather_505_cast_uint16_to_int32, gather_506))[name = string("concat_528")]; + tensor real_div_55 = real_div(x = concat_528, y = shape_562_cast_fp16)[name = string("real_div_55")]; + tensor hidden_states_825_cast_fp16 = tile(reps = real_div_55, x = var_5115_cast_fp16)[name = string("hidden_states_825_cast_fp16")]; + tensor concat_529x = const()[name = string("concat_529x"), val = tensor([1, 24, -1, 128])]; + tensor value_states_cast_fp16 = reshape(shape = concat_529x, x = hidden_states_825_cast_fp16)[name = string("value_states_cast_fp16")]; + tensor var_5125_shape_cast_fp16 = shape(x = key_states_cast_fp16)[name = string("op_5125_shape_cast_fp16")]; + int32 gather_507_axis_0 = const()[name = string("gather_507_axis_0"), val = int32(0)]; + int32 gather_507_batch_dims_0 = const()[name = string("gather_507_batch_dims_0"), val = int32(0)]; + bool gather_507_validate_indices_0 = const()[name = string("gather_507_validate_indices_0"), val = bool(false)]; + string var_5125_shape_cast_fp16_to_uint16_dtype_0 = const()[name = string("op_5125_shape_cast_fp16_to_uint16_dtype_0"), val = string("uint16")]; + uint16 select_507_to_uint16 = const()[name = string("select_507_to_uint16"), val = uint16(2)]; + tensor var_5125_shape_cast_fp16_to_uint16 = cast(dtype = var_5125_shape_cast_fp16_to_uint16_dtype_0, x = var_5125_shape_cast_fp16)[name = string("cast_2")]; + uint16 gather_507_cast_uint16 = gather(axis = gather_507_axis_0, batch_dims = gather_507_batch_dims_0, indices = select_507_to_uint16, validate_indices = gather_507_validate_indices_0, x = var_5125_shape_cast_fp16_to_uint16)[name = string("gather_507_cast_uint16")]; + string gather_507_cast_uint16_to_int32_dtype_0 = const()[name = string("gather_507_cast_uint16_to_int32_dtype_0"), val = string("int32")]; + int32 concat_530_values0_0 = const()[name = string("concat_530_values0_0"), val = int32(1)]; + int32 concat_530_values1_0 = const()[name = string("concat_530_values1_0"), val = int32(1)]; + int32 concat_530_values2_0 = const()[name = string("concat_530_values2_0"), val = int32(0)]; + int32 concat_530_axis_0 = const()[name = string("concat_530_axis_0"), val = int32(0)]; + bool concat_530_interleave_0 = const()[name = string("concat_530_interleave_0"), val = bool(false)]; + int32 gather_507_cast_uint16_to_int32 = cast(dtype = gather_507_cast_uint16_to_int32_dtype_0, x = gather_507_cast_uint16)[name = string("cast_1")]; + tensor concat_530 = concat(axis = concat_530_axis_0, interleave = concat_530_interleave_0, values = (concat_530_values0_0, concat_530_values1_0, concat_530_values2_0, gather_507_cast_uint16_to_int32))[name = string("concat_530")]; + tensor causal_mask_begin_0 = const()[name = string("causal_mask_begin_0"), val = tensor([0, 0, 0, 0])]; + tensor causal_mask_end_mask_0 = const()[name = string("causal_mask_end_mask_0"), val = tensor([true, true, true, false])]; + tensor causal_mask_cast_fp16 = slice_by_index(begin = causal_mask_begin_0, end = concat_530, end_mask = causal_mask_end_mask_0, x = causal_mask)[name = string("causal_mask_cast_fp16")]; + tensor attn_output_109_cast_fp16 = scaled_dot_product_attention(attn_mask = causal_mask_cast_fp16, key = key_states_cast_fp16, query = query_states_cast_fp16, value = value_states_cast_fp16)[name = string("attn_output_109_cast_fp16")]; + tensor var_5131_perm_0 = const()[name = string("op_5131_perm_0"), val = tensor([0, 2, 1, 3])]; + int32 concat_531_axis_0 = const()[name = string("concat_531_axis_0"), val = int32(0)]; + bool concat_531_interleave_0 = const()[name = string("concat_531_interleave_0"), val = bool(false)]; + int32 gather_491_cast_uint16_to_int32 = cast(dtype = gather_491_cast_uint16_to_int32_dtype_0, x = gather_491_cast_uint16)[name = string("cast_0")]; + tensor concat_531 = concat(axis = concat_531_axis_0, interleave = concat_531_interleave_0, values = (gather_490, gather_491_cast_uint16_to_int32, var_72))[name = string("concat_531")]; + tensor var_5131_cast_fp16 = transpose(perm = var_5131_perm_0, x = attn_output_109_cast_fp16)[name = string("transpose_0")]; + tensor input_217_cast_fp16 = reshape(shape = concat_531, x = var_5131_cast_fp16)[name = string("input_217_cast_fp16")]; + tensor model_model_layers_27_self_attn_o_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1759688704))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1764407360))))[name = string("model_model_layers_27_self_attn_o_proj_weight_to_fp16_quantized")]; + tensor linear_192_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_27_self_attn_o_proj_weight_to_fp16_quantized, x = input_217_cast_fp16)[name = string("linear_192_cast_fp16")]; + tensor hidden_states_829_cast_fp16 = add(x = hidden_states_809_cast_fp16, y = linear_192_cast_fp16)[name = string("hidden_states_829_cast_fp16")]; + fp16 var_78_promoted_55_to_fp16 = const()[name = string("op_78_promoted_55_to_fp16"), val = fp16(0x1p+1)]; + tensor var_5140_cast_fp16 = pow(x = hidden_states_829_cast_fp16, y = var_78_promoted_55_to_fp16)[name = string("op_5140_cast_fp16")]; + tensor variance_111_axes_0 = const()[name = string("variance_111_axes_0"), val = tensor([-1])]; + bool variance_111_keep_dims_0 = const()[name = string("variance_111_keep_dims_0"), val = bool(true)]; + tensor variance_111_cast_fp16 = reduce_mean(axes = variance_111_axes_0, keep_dims = variance_111_keep_dims_0, x = var_5140_cast_fp16)[name = string("variance_111_cast_fp16")]; + fp16 var_5143_to_fp16 = const()[name = string("op_5143_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_5144_cast_fp16 = add(x = variance_111_cast_fp16, y = var_5143_to_fp16)[name = string("op_5144_cast_fp16")]; + fp32 var_5145_epsilon_0 = const()[name = string("op_5145_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_5145_cast_fp16 = rsqrt(epsilon = var_5145_epsilon_0, x = var_5144_cast_fp16)[name = string("op_5145_cast_fp16")]; + tensor hidden_states_833_cast_fp16 = mul(x = hidden_states_829_cast_fp16, y = var_5145_cast_fp16)[name = string("hidden_states_833_cast_fp16")]; + tensor model_model_layers_27_post_attention_layernorm_weight_to_fp16 = const()[name = string("model_model_layers_27_post_attention_layernorm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1764997248)))]; + tensor input_219_cast_fp16 = mul(x = model_model_layers_27_post_attention_layernorm_weight_to_fp16, y = hidden_states_833_cast_fp16)[name = string("input_219_cast_fp16")]; + tensor model_model_layers_27_mlp_gate_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1765003456))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1777586432))))[name = string("model_model_layers_27_mlp_gate_proj_weight_to_fp16_quantized")]; + tensor linear_193_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_27_mlp_gate_proj_weight_to_fp16_quantized, x = input_219_cast_fp16)[name = string("linear_193_cast_fp16")]; + tensor var_5157_cast_fp16 = silu(x = linear_193_cast_fp16)[name = string("op_5157_cast_fp16")]; + tensor model_model_layers_27_mlp_up_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1779159360))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1791742336))))[name = string("model_model_layers_27_mlp_up_proj_weight_to_fp16_quantized")]; + tensor linear_194_cast_fp16 = linear(bias = linear_4_bias_0_to_fp16, weight = model_model_layers_27_mlp_up_proj_weight_to_fp16_quantized, x = input_219_cast_fp16)[name = string("linear_194_cast_fp16")]; + tensor input_223_cast_fp16 = mul(x = var_5157_cast_fp16, y = linear_194_cast_fp16)[name = string("input_223_cast_fp16")]; + tensor model_model_layers_27_mlp_down_proj_weight_to_fp16_quantized = constexpr_blockwise_shift_scale(data = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1793315264))), scale = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1805898240))))[name = string("model_model_layers_27_mlp_down_proj_weight_to_fp16_quantized")]; + tensor linear_195_cast_fp16 = linear(bias = linear_0_bias_0_to_fp16, weight = model_model_layers_27_mlp_down_proj_weight_to_fp16_quantized, x = input_223_cast_fp16)[name = string("linear_195_cast_fp16")]; + tensor hidden_states_839_cast_fp16 = add(x = hidden_states_829_cast_fp16, y = linear_195_cast_fp16)[name = string("hidden_states_839_cast_fp16")]; + fp16 var_78_promoted_56_to_fp16 = const()[name = string("op_78_promoted_56_to_fp16"), val = fp16(0x1p+1)]; + tensor var_5166_cast_fp16 = pow(x = hidden_states_839_cast_fp16, y = var_78_promoted_56_to_fp16)[name = string("op_5166_cast_fp16")]; + tensor variance_axes_0 = const()[name = string("variance_axes_0"), val = tensor([-1])]; + bool variance_keep_dims_0 = const()[name = string("variance_keep_dims_0"), val = bool(true)]; + tensor variance_cast_fp16 = reduce_mean(axes = variance_axes_0, keep_dims = variance_keep_dims_0, x = var_5166_cast_fp16)[name = string("variance_cast_fp16")]; + fp16 var_5169_to_fp16 = const()[name = string("op_5169_to_fp16"), val = fp16(0x1.5p-17)]; + tensor var_5170_cast_fp16 = add(x = variance_cast_fp16, y = var_5169_to_fp16)[name = string("op_5170_cast_fp16")]; + fp32 var_5171_epsilon_0 = const()[name = string("op_5171_epsilon_0"), val = fp32(0x1.197998p-40)]; + tensor var_5171_cast_fp16 = rsqrt(epsilon = var_5171_epsilon_0, x = var_5170_cast_fp16)[name = string("op_5171_cast_fp16")]; + tensor hidden_states_843_cast_fp16 = mul(x = hidden_states_839_cast_fp16, y = var_5171_cast_fp16)[name = string("hidden_states_843_cast_fp16")]; + tensor model_model_norm_weight_to_fp16 = const()[name = string("model_model_norm_weight_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1807471168)))]; + tensor hidden_states_cast_fp16 = mul(x = model_model_norm_weight_to_fp16, y = hidden_states_843_cast_fp16)[name = string("hidden_states_cast_fp16")]; + tensor linear_196_bias_0_to_fp16 = const()[name = string("linear_196_bias_0_to_fp16"), val = tensor(BLOBFILE(path = string("@model_path/weights/weight.bin"), offset = uint64(1807477376)))]; + tensor logits = linear(bias = linear_196_bias_0_to_fp16, weight = model_model_embed_tokens_weight_to_fp16_quantized, x = hidden_states_cast_fp16)[name = string("linear_196_cast_fp16")]; + } -> (logits); +} \ No newline at end of file