from collections import namedtuple import os import torch DISABLE_COMPILE = os.getenv("DISABLE_COMPILE", "0") == "1" torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True torch.backends.cudnn.benchmark = True torch.backends.cudnn.benchmark_limit = 20 torch.set_float32_matmul_precision("high") import math from torch import Tensor, nn from pydantic import BaseModel from torch.nn import functional as F from float8_quantize import F8Linear try: from cublas_ops import CublasLinear except ImportError: CublasLinear = nn.Linear class FluxParams(BaseModel): in_channels: int vec_in_dim: int context_in_dim: int hidden_size: int mlp_ratio: float num_heads: int depth: int depth_single_blocks: int axes_dim: list[int] theta: int qkv_bias: bool guidance_embed: bool # attention is always same shape each time it's called per H*W, so compile with fullgraph # @torch.compile(mode="reduce-overhead", fullgraph=True, disable=DISABLE_COMPILE) def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor) -> Tensor: q, k = apply_rope(q, k, pe) x = F.scaled_dot_product_attention(q, k, v).transpose(1, 2) x = x.reshape(*x.shape[:-2], -1) return x # @torch.compile(mode="reduce-overhead", disable=DISABLE_COMPILE) def rope(pos: Tensor, dim: int, theta: int) -> Tensor: scale = torch.arange(0, dim, 2, dtype=torch.float32, device=pos.device) / dim omega = 1.0 / (theta**scale) out = torch.einsum("...n,d->...nd", pos, omega) out = torch.stack( [torch.cos(out), -torch.sin(out), torch.sin(out), torch.cos(out)], dim=-1 ) out = out.reshape(*out.shape[:-1], 2, 2) return out def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]: xq_ = xq.reshape(*xq.shape[:-1], -1, 1, 2) xk_ = xk.reshape(*xk.shape[:-1], -1, 1, 2) xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1] xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1] return xq_out.reshape(*xq.shape), xk_out.reshape(*xk.shape) class EmbedND(nn.Module): def __init__( self, dim: int, theta: int, axes_dim: list[int], dtype: torch.dtype = torch.bfloat16, ): super().__init__() self.dim = dim self.theta = theta self.axes_dim = axes_dim self.dtype = dtype def forward(self, ids: Tensor) -> Tensor: n_axes = ids.shape[-1] emb = torch.cat( [ rope(ids[..., i], self.axes_dim[i], self.theta).type(self.dtype) for i in range(n_axes) ], dim=-3, ) return emb.unsqueeze(1) def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 1000.0): """ Create sinusoidal timestep embeddings. :param t: a 1-D Tensor of N indices, one per batch element. These may be fractional. :param dim: the dimension of the output. :param max_period: controls the minimum frequency of the embeddings. :return: an (N, D) Tensor of positional embeddings. """ t = time_factor * t half = dim // 2 freqs = torch.exp( -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half ) args = t[:, None].float() * freqs[None] embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1) if dim % 2: embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1) return embedding class MLPEmbedder(nn.Module): def __init__(self, in_dim: int, hidden_dim: int): super().__init__() self.in_layer = F8Linear(in_dim, hidden_dim, bias=True) self.silu = nn.SiLU() self.out_layer = F8Linear(hidden_dim, hidden_dim, bias=True) def forward(self, x: Tensor) -> Tensor: return self.out_layer(self.silu(self.in_layer(x))) class RMSNorm(torch.nn.Module): def __init__(self, dim: int): super().__init__() self.scale = nn.Parameter(torch.ones(dim)) def forward(self, x: Tensor): return F.rms_norm(x, self.scale.shape, self.scale, eps=1e-6) class QKNorm(torch.nn.Module): def __init__(self, dim: int): super().__init__() self.query_norm = RMSNorm(dim) self.key_norm = RMSNorm(dim) def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]: q = self.query_norm(q) k = self.key_norm(k) return q, k class SelfAttention(nn.Module): def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads self.qkv = F8Linear(dim, dim * 3, bias=qkv_bias) self.norm = QKNorm(head_dim) self.proj = F8Linear(dim, dim) self.K = 3 self.H = self.num_heads self.KH = self.K * self.H def rearrange_for_norm(self, x: Tensor) -> tuple[Tensor, Tensor, Tensor]: B, L, D = x.shape q, k, v = x.reshape(B, L, self.K, self.H, D // self.KH).permute(2, 0, 3, 1, 4) return q, k, v def forward(self, x: Tensor, pe: Tensor) -> Tensor: qkv = self.qkv(x) q, k, v = self.rearrange_for_norm(qkv) q, k = self.norm(q, k, v) x = attention(q, k, v, pe=pe) x = self.proj(x) return x ModulationOut = namedtuple("ModulationOut", ["shift", "scale", "gate"]) class Modulation(nn.Module): def __init__(self, dim: int, double: bool): super().__init__() self.is_double = double self.multiplier = 6 if double else 3 self.lin = F8Linear(dim, self.multiplier * dim, bias=True) self.act = nn.SiLU() def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]: out = self.lin(self.act(vec))[:, None, :].chunk(self.multiplier, dim=-1) return ( ModulationOut(*out[:3]), ModulationOut(*out[3:]) if self.is_double else None, ) class DoubleStreamBlock(nn.Module): def __init__( self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, dtype: torch.dtype = torch.float16, ): super().__init__() self.dtype = dtype mlp_hidden_dim = int(hidden_size * mlp_ratio) self.num_heads = num_heads self.hidden_size = hidden_size self.img_mod = Modulation(hidden_size, double=True) self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.img_attn = SelfAttention( dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias ) self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.img_mlp = nn.Sequential( F8Linear(hidden_size, mlp_hidden_dim, bias=True), nn.GELU(approximate="tanh"), F8Linear(mlp_hidden_dim, hidden_size, bias=True), ) self.txt_mod = Modulation(hidden_size, double=True) self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.txt_attn = SelfAttention( dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias ) self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.txt_mlp = nn.Sequential( F8Linear(hidden_size, mlp_hidden_dim, bias=True), nn.GELU(approximate="tanh"), F8Linear(mlp_hidden_dim, hidden_size, bias=True), ) self.K = 3 self.H = self.num_heads self.KH = self.K * self.H def rearrange_for_norm(self, x: Tensor) -> tuple[Tensor, Tensor, Tensor]: B, L, D = x.shape q, k, v = x.reshape(B, L, self.K, self.H, D // self.KH).permute(2, 0, 3, 1, 4) return q, k, v def forward( self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, ) -> tuple[Tensor, Tensor]: img_mod1, img_mod2 = self.img_mod(vec) txt_mod1, txt_mod2 = self.txt_mod(vec) # prepare image for attention img_modulated = self.img_norm1(img) img_modulated = (1 + img_mod1.scale) * img_modulated + img_mod1.shift img_qkv = self.img_attn.qkv(img_modulated) img_q, img_k, img_v = self.rearrange_for_norm(img_qkv) img_q, img_k = self.img_attn.norm(img_q, img_k, img_v) # prepare txt for attention txt_modulated = self.txt_norm1(txt) txt_modulated = (1 + txt_mod1.scale) * txt_modulated + txt_mod1.shift txt_qkv = self.txt_attn.qkv(txt_modulated) txt_q, txt_k, txt_v = self.rearrange_for_norm(txt_qkv) txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v) q = torch.cat((txt_q, img_q), dim=2) k = torch.cat((txt_k, img_k), dim=2) v = torch.cat((txt_v, img_v), dim=2) attn = attention(q, k, v, pe=pe) txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :] # calculate the img bloks img = img + img_mod1.gate * self.img_attn.proj(img_attn) img = img + img_mod2.gate * self.img_mlp( (1 + img_mod2.scale) * self.img_norm2(img) + img_mod2.shift ).clamp(min=-384 * 2, max=384 * 2) # calculate the txt bloks txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn) txt = txt + txt_mod2.gate * self.txt_mlp( (1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift ).clamp(min=-384 * 2, max=384 * 2) return img, txt class SingleStreamBlock(nn.Module): """ A DiT block with parallel linear layers as described in https://arxiv.org/abs/2302.05442 and adapted modulation interface. """ def __init__( self, hidden_size: int, num_heads: int, mlp_ratio: float = 4.0, qk_scale: float | None = None, dtype: torch.dtype = torch.float16, ): super().__init__() self.dtype = dtype self.hidden_dim = hidden_size self.num_heads = num_heads head_dim = hidden_size // num_heads self.scale = qk_scale or head_dim**-0.5 self.mlp_hidden_dim = int(hidden_size * mlp_ratio) # qkv and mlp_in self.linear1 = F8Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim) # proj and mlp_out self.linear2 = F8Linear(hidden_size + self.mlp_hidden_dim, hidden_size) self.norm = QKNorm(head_dim) self.hidden_size = hidden_size self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.mlp_act = nn.GELU(approximate="tanh") self.modulation = Modulation(hidden_size, double=False) self.K = 3 self.H = self.num_heads self.KH = self.K * self.H def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor: mod = self.modulation(vec)[0] pre_norm = self.pre_norm(x) x_mod = (1 + mod.scale) * pre_norm + mod.shift qkv, mlp = torch.split( self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1, ) B, L, D = qkv.shape q, k, v = qkv.reshape(B, L, self.K, self.H, D // self.KH).permute(2, 0, 3, 1, 4) q, k = self.norm(q, k, v) attn = attention(q, k, v, pe=pe) output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2)).clamp( min=-384 * 4, max=384 * 4 ) return x + mod.gate * output class LastLayer(nn.Module): def __init__(self, hidden_size: int, patch_size: int, out_channels: int): super().__init__() self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6) self.linear = CublasLinear( hidden_size, patch_size * patch_size * out_channels, bias=True ) self.adaLN_modulation = nn.Sequential( nn.SiLU(), CublasLinear(hidden_size, 2 * hidden_size, bias=True) ) def forward(self, x: Tensor, vec: Tensor) -> Tensor: shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1) x = (1 + scale[:, None, :]) * self.norm_final(x) + shift[:, None, :] x = self.linear(x) return x class Flux(nn.Module): """ Transformer model for flow matching on sequences. """ def __init__(self, params: FluxParams, dtype: torch.dtype = torch.float16): super().__init__() self.dtype = dtype self.params = params self.in_channels = params.in_channels self.out_channels = self.in_channels if params.hidden_size % params.num_heads != 0: raise ValueError( f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}" ) pe_dim = params.hidden_size // params.num_heads if sum(params.axes_dim) != pe_dim: raise ValueError( f"Got {params.axes_dim} but expected positional dim {pe_dim}" ) self.hidden_size = params.hidden_size self.num_heads = params.num_heads self.pe_embedder = EmbedND( dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim, dtype=self.dtype, ) self.img_in = F8Linear(self.in_channels, self.hidden_size, bias=True) self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size) self.guidance_in = ( MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity() ) self.txt_in = F8Linear(params.context_in_dim, self.hidden_size) self.double_blocks = nn.ModuleList( [ DoubleStreamBlock( self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, qkv_bias=params.qkv_bias, dtype=self.dtype, ) for _ in range(params.depth) ] ) self.single_blocks = nn.ModuleList( [ SingleStreamBlock( self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=self.dtype, ) for _ in range(params.depth_single_blocks) ] ) self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels) def forward( self, img: Tensor, img_ids: Tensor, txt: Tensor, txt_ids: Tensor, timesteps: Tensor, y: Tensor, guidance: Tensor | None = None, ) -> Tensor: if img.ndim != 3 or txt.ndim != 3: raise ValueError("Input img and txt tensors must have 3 dimensions.") # running on sequences img img = self.img_in(img) vec = self.time_in(timestep_embedding(timesteps, 256).type(self.dtype)) if self.params.guidance_embed: if guidance is None: raise ValueError( "Didn't get guidance strength for guidance distilled model." ) vec = vec + self.guidance_in( timestep_embedding(guidance, 256).type(self.dtype) ) vec = vec + self.vector_in(y) txt = self.txt_in(txt) ids = torch.cat((txt_ids, img_ids), dim=1) pe = self.pe_embedder(ids) # double stream blocks for block in self.double_blocks: img, txt = block(img=img, txt=txt, vec=vec, pe=pe) img = torch.cat((txt, img), 1) # single stream blocks for block in self.single_blocks: img = block(img, vec=vec, pe=pe) img = img[:, txt.shape[1] :, ...] img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels) return img @classmethod def from_pretrained(cls, path: str, dtype: torch.dtype = torch.bfloat16) -> "Flux": from util import load_config_from_path from safetensors.torch import load_file config = load_config_from_path(path) with torch.device("meta"): klass = cls(params=config.params, dtype=dtype).type(dtype) ckpt = load_file(config.ckpt_path, device="cpu") klass.load_state_dict(ckpt, assign=True) return klass.to("cpu")