import io import math import random from typing import TYPE_CHECKING, Callable, List from PIL import Image import numpy as np import warnings warnings.filterwarnings("ignore", category=UserWarning) warnings.filterwarnings("ignore", category=FutureWarning) warnings.filterwarnings("ignore", category=DeprecationWarning) import torch from einops import rearrange from flux_emphasis import get_weighted_text_embeddings_flux torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True torch.backends.cudnn.benchmark = True torch.backends.cudnn.benchmark_limit = 20 torch.set_float32_matmul_precision("high") from torch._dynamo import config from torch._inductor import config as ind_config from pybase64 import standard_b64decode config.cache_size_limit = 10000000000 ind_config.shape_padding = True from loguru import logger from image_encoder import ImageEncoder from torchvision.transforms import functional as TF from tqdm import tqdm from util import ( ModelSpec, into_device, into_dtype, load_config_from_path, load_models_from_config, ) import platform if platform.system() == "Windows": MAX_RAND = 2**16 - 1 else: MAX_RAND = 2**32 - 1 if TYPE_CHECKING: from modules.conditioner import HFEmbedder from modules.flux_model import Flux from modules.autoencoder import AutoEncoder class FluxPipeline: """ FluxPipeline is a class that provides a pipeline for generating images using the Flux model. It handles input preparation, timestep generation, noise generation, device management and model compilation. """ def __init__( self, name: str, offload: bool = False, clip: "HFEmbedder" = None, t5: "HFEmbedder" = None, model: "Flux" = None, ae: "AutoEncoder" = None, dtype: torch.dtype = torch.float16, verbose: bool = False, flux_device: torch.device | str = "cuda:0", ae_device: torch.device | str = "cuda:1", clip_device: torch.device | str = "cuda:1", t5_device: torch.device | str = "cuda:1", config: ModelSpec = None, debug: bool = False, ): """ Initialize the FluxPipeline class. This class is responsible for preparing input tensors for the Flux model, generating timesteps and noise, and handling device management for model offloading. """ self.debug = debug self.name = name self.device_flux = ( flux_device if isinstance(flux_device, torch.device) else torch.device(flux_device) ) self.device_ae = ( ae_device if isinstance(ae_device, torch.device) else torch.device(ae_device) ) self.device_clip = ( clip_device if isinstance(clip_device, torch.device) else torch.device(clip_device) ) self.device_t5 = ( t5_device if isinstance(t5_device, torch.device) else torch.device(t5_device) ) self.dtype = dtype self.offload = offload self.clip: "HFEmbedder" = clip self.t5: "HFEmbedder" = t5 self.model: "Flux" = model self.ae: "AutoEncoder" = ae self.rng = torch.Generator(device="cpu") self.img_encoder = ImageEncoder() self.verbose = verbose self.ae_dtype = torch.bfloat16 self.config = config self.offload_text_encoder = config.offload_text_encoder self.offload_vae = config.offload_vae self.offload_flow = config.offload_flow if not self.offload_flow: self.model.to(self.device_flux) if not self.offload_vae: self.ae.to(self.device_ae) if not self.offload_text_encoder: self.clip.to(self.device_clip) self.t5.to(self.device_t5) if self.config.compile_blocks or self.config.compile_extras: if not self.config.prequantized_flow: logger.info("Running warmups for compile...") warmup_dict = dict( prompt="A beautiful test image used to solidify the fp8 nn.Linear input scales prior to compilation 😉", height=768, width=768, num_steps=25, guidance=3.5, seed=10, ) self.generate(**warmup_dict) to_gpu_extras = [ "vector_in", "img_in", "txt_in", "time_in", "guidance_in", "final_layer", "pe_embedder", ] if self.config.compile_blocks: for block in self.model.double_blocks: block.compile() for block in self.model.single_blocks: block.compile() if self.config.compile_extras: for extra in to_gpu_extras: getattr(self.model, extra).compile() def set_seed(self, seed: int | None = None) -> torch.Generator: if isinstance(seed, (int, float)): seed = int(abs(seed)) % MAX_RAND self.rng = torch.manual_seed(seed) elif isinstance(seed, str): try: seed = abs(int(seed)) % MAX_RAND except Exception as e: logger.warning( f"Recieved string representation of seed, but was not able to convert to int: {seed}, using random seed" ) seed = abs(self.rng.seed()) % MAX_RAND else: seed = abs(self.rng.seed()) % MAX_RAND torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) cuda_generator = torch.Generator("cuda").manual_seed(seed) return cuda_generator, seed @torch.inference_mode() def prepare( self, img: torch.Tensor, prompt: str | list[str], target_device: torch.device = torch.device("cuda:0"), target_dtype: torch.dtype = torch.float16, ) -> tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: """ Prepare input tensors for the Flux model. This function processes the input image and text prompt, converting them into the appropriate format and embedding representations required by the model. Args: img (torch.Tensor): Input image tensor of shape (batch_size, channels, height, width). prompt (str | list[str]): Text prompt or list of prompts guiding the image generation. target_device (torch.device, optional): The target device for the output tensors. Defaults to torch.device("cuda:0"). target_dtype (torch.dtype, optional): The target data type for the output tensors. Defaults to torch.float16. Returns: tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]: A tuple containing: - img: Processed image tensor. - img_ids: Image position IDs. - vec: Clip text embedding vector. - txt: T5 text embedding hidden states. - txt_ids: Text position IDs. Note: This function handles the necessary device management for text encoder offloading if enabled in the configuration. """ bs, c, h, w = img.shape if bs == 1 and not isinstance(prompt, str): bs = len(prompt) img = img.unfold(2, 2, 2).unfold(3, 2, 2).permute(0, 2, 3, 1, 4, 5) img = img.reshape(img.shape[0], -1, img.shape[3] * img.shape[4] * img.shape[5]) assert img.shape == ( bs, (h // 2) * (w // 2), c * 2 * 2, ), f"{img.shape} != {(bs, (h//2)*(w//2), c*2*2)}" if img.shape[0] == 1 and bs > 1: img = img[None].repeat_interleave(bs, dim=0) img_ids = torch.zeros( h // 2, w // 2, 3, device=target_device, dtype=target_dtype ) img_ids[..., 1] = ( img_ids[..., 1] + torch.arange(h // 2, device=target_device, dtype=target_dtype)[:, None] ) img_ids[..., 2] = ( img_ids[..., 2] + torch.arange(w // 2, device=target_device, dtype=target_dtype)[None, :] ) img_ids = img_ids[None].repeat(bs, 1, 1, 1).flatten(1, 2) if self.offload_text_encoder: self.clip.to(device=self.device_clip) self.t5.to(device=self.device_t5) # get the text embeddings vec, txt, txt_ids = get_weighted_text_embeddings_flux( self, prompt, num_images_per_prompt=bs, device=self.device_clip, target_device=target_device, target_dtype=target_dtype, debug=self.debug, ) # offload text encoder to cpu if needed if self.offload_text_encoder: self.clip.to("cpu") self.t5.to("cpu") torch.cuda.empty_cache() return img, img_ids, vec, txt, txt_ids @torch.inference_mode() def time_shift(self, mu: float, sigma: float, t: torch.Tensor): return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma) def get_lin_function( self, x1: float = 256, y1: float = 0.5, x2: float = 4096, y2: float = 1.15 ) -> Callable[[float], float]: m = (y2 - y1) / (x2 - x1) b = y1 - m * x1 return lambda x: m * x + b @torch.inference_mode() def get_schedule( self, num_steps: int, image_seq_len: int, base_shift: float = 0.5, max_shift: float = 1.15, shift: bool = True, ) -> list[float]: """Generates a schedule of timesteps for the given number of steps and image sequence length.""" # extra step for zero timesteps = torch.linspace(1, 0, num_steps + 1) # shifting the schedule to favor high timesteps for higher signal images if shift: # eastimate mu based on linear estimation between two points mu = self.get_lin_function(y1=base_shift, y2=max_shift)(image_seq_len) timesteps = self.time_shift(mu, 1.0, timesteps) return timesteps.tolist() @torch.inference_mode() def get_noise( self, num_samples: int, height: int, width: int, generator: torch.Generator, dtype=None, device=None, ) -> torch.Tensor: """Generates a latent noise tensor of the given shape and dtype on the given device.""" if device is None: device = self.device_flux if dtype is None: dtype = self.dtype return torch.randn( num_samples, 16, # allow for packing 2 * math.ceil(height / 16), 2 * math.ceil(width / 16), device=device, dtype=dtype, generator=generator, requires_grad=False, ) @torch.inference_mode() def into_bytes(self, x: torch.Tensor, jpeg_quality: int = 99) -> io.BytesIO: """Converts the image tensor to bytes.""" # bring into PIL format and save num_images = x.shape[0] images: List[torch.Tensor] = [] for i in range(num_images): x = ( x[i] .clamp(-1, 1) .add(1.0) .mul(127.5) .clamp(0, 255) .contiguous() .type(torch.uint8) ) images.append(x) if len(images) == 1: im = images[0] else: im = torch.vstack(images) im = self.img_encoder.encode_torch(im, quality=jpeg_quality) images.clear() return im @torch.inference_mode() def load_init_image_if_needed( self, init_image: torch.Tensor | str | Image.Image | np.ndarray ) -> torch.Tensor: """ Loads the initial image if it is a string, numpy array, or PIL.Image, if torch.Tensor, expects it to be in the correct format and returns it as is. """ if isinstance(init_image, str): try: init_image = Image.open(init_image) except Exception as e: init_image = Image.open( io.BytesIO(standard_b64decode(init_image.split(",")[-1])) ) init_image = torch.from_numpy(np.array(init_image)).type(torch.uint8) elif isinstance(init_image, np.ndarray): init_image = torch.from_numpy(init_image).type(torch.uint8) elif isinstance(init_image, Image.Image): init_image = torch.from_numpy(np.array(init_image)).type(torch.uint8) return init_image @torch.inference_mode() def vae_decode(self, x: torch.Tensor, height: int, width: int) -> torch.Tensor: """Decodes the latent tensor to the pixel space.""" if self.offload_vae: self.ae.to(self.device_ae) x = x.to(self.device_ae) else: x = x.to(self.device_ae) x = self.unpack(x.float(), height, width) with torch.autocast( device_type=self.device_ae.type, dtype=torch.bfloat16, cache_enabled=False ): x = self.ae.decode(x) if self.offload_vae: self.ae.to("cpu") torch.cuda.empty_cache() return x def unpack(self, x: torch.Tensor, height: int, width: int) -> torch.Tensor: return rearrange( x, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=math.ceil(height / 16), w=math.ceil(width / 16), ph=2, pw=2, ) @torch.inference_mode() def resize_center_crop( self, img: torch.Tensor, height: int, width: int ) -> torch.Tensor: """Resizes and crops the image to the given height and width.""" img = TF.resize(img, min(width, height)) img = TF.center_crop(img, (height, width)) return img @torch.inference_mode() def preprocess_latent( self, init_image: torch.Tensor | np.ndarray = None, height: int = 720, width: int = 1024, num_steps: int = 20, strength: float = 1.0, generator: torch.Generator = None, num_images: int = 1, ) -> tuple[torch.Tensor, List[float]]: """ Preprocesses the latent tensor for the given number of steps and image sequence length. Also, if an initial image is provided, it is vae encoded and injected with the appropriate noise given the strength and number of steps replacing the latent tensor. """ # prepare input if init_image is not None: if isinstance(init_image, np.ndarray): init_image = torch.from_numpy(init_image) init_image = ( init_image.permute(2, 0, 1) .contiguous() .to(self.device_ae, dtype=self.ae_dtype) .div(127.5) .sub(1)[None, ...] ) init_image = self.resize_center_crop(init_image, height, width) with torch.autocast( device_type=self.device_ae.type, dtype=torch.bfloat16, cache_enabled=False, ): if self.offload_vae: self.ae.to(self.device_ae) init_image = ( self.ae.encode(init_image) .to(dtype=self.dtype, device=self.device_flux) .repeat(num_images, 1, 1, 1) ) if self.offload_vae: self.ae.to("cpu") torch.cuda.empty_cache() x = self.get_noise( num_images, height, width, device=self.device_flux, dtype=self.dtype, generator=generator, ) timesteps = self.get_schedule( num_steps=num_steps, image_seq_len=x.shape[-1] * x.shape[-2] // 4, shift=(self.name != "flux-schnell"), ) if init_image is not None: t_idx = int((1 - strength) * num_steps) t = timesteps[t_idx] timesteps = timesteps[t_idx:] x = t * x + (1.0 - t) * init_image return x, timesteps @torch.inference_mode() def generate( self, prompt: str, width: int = 720, height: int = 1024, num_steps: int = 24, guidance: float = 3.5, seed: int | None = None, init_image: torch.Tensor | str | Image.Image | np.ndarray | None = None, strength: float = 1.0, silent: bool = False, num_images: int = 1, return_seed: bool = False, jpeg_quality: int = 99, ) -> io.BytesIO: """ Generate images based on the given prompt and parameters. Args: prompt `(str)`: The text prompt to guide the image generation. width `(int, optional)`: Width of the generated image. Defaults to 720. height `(int, optional)`: Height of the generated image. Defaults to 1024. num_steps `(int, optional)`: Number of denoising steps. Defaults to 24. guidance `(float, optional)`: Guidance scale for text-to-image generation. Defaults to 3.5. seed `(int | None, optional)`: Random seed for reproducibility. If None, a random seed is used. Defaults to None. init_image `(torch.Tensor | str | Image.Image | np.ndarray | None, optional)`: Initial image for image-to-image generation. Defaults to None. -- note: if the image's height/width do not match the height/width of the generated image, the image is resized and centered cropped to match the height/width arguments. -- If a string is provided, it is assumed to be either a path to an image file or a base64 encoded image. -- If a numpy array is provided, it is assumed to be an RGB numpy array of shape (height, width, 3) and dtype uint8. -- If a PIL.Image is provided, it is assumed to be an RGB PIL.Image. -- If a torch.Tensor is provided, it is assumed to be a torch.Tensor of shape (height, width, 3) and dtype uint8 with range [0, 255]. strength `(float, optional)`: Strength of the init_image in image-to-image generation. Defaults to 1.0. silent `(bool, optional)`: If True, suppresses progress bar. Defaults to False. num_images `(int, optional)`: Number of images to generate. Defaults to 1. return_seed `(bool, optional)`: If True, returns the seed along with the generated image. Defaults to False. jpeg_quality `(int, optional)`: Quality of the JPEG compression. Defaults to 99. Returns: io.BytesIO: Generated image(s) in bytes format. int: Seed used for generation (only if return_seed is True). """ num_steps = 4 if self.name == "flux-schnell" else num_steps init_image = self.load_init_image_if_needed(init_image) # allow for packing and conversion to latent space height = 16 * (height // 16) width = 16 * (width // 16) generator, seed = self.set_seed(seed) if not silent: logger.info(f"Generating with:\nSeed: {seed}\nPrompt: {prompt}") # preprocess the latent img, timesteps = self.preprocess_latent( init_image=init_image, height=height, width=width, num_steps=num_steps, strength=strength, generator=generator, num_images=num_images, ) # prepare inputs img, img_ids, vec, txt, txt_ids = map( lambda x: x.contiguous(), self.prepare( img=img, prompt=prompt, target_device=self.device_flux, target_dtype=self.dtype, ), ) # this is ignored for schnell guidance_vec = torch.full( (img.shape[0],), guidance, device=self.device_flux, dtype=self.dtype ) t_vec = None # dispatch to gpu if offloaded if self.offload_flow: self.model.to(self.device_flux) # perform the denoising loop for t_curr, t_prev in tqdm( zip(timesteps[:-1], timesteps[1:]), total=len(timesteps) - 1, disable=silent ): if t_vec is None: t_vec = torch.full( (img.shape[0],), t_curr, dtype=self.dtype, device=self.device_flux, ) else: t_vec = t_vec.reshape((img.shape[0],)).fill_(t_curr) pred = self.model.forward( img=img, img_ids=img_ids, txt=txt, txt_ids=txt_ids, y=vec, timesteps=t_vec, guidance=guidance_vec, ) img = img + (t_prev - t_curr) * pred # offload the model to cpu if needed if self.offload_flow: self.model.to("cpu") torch.cuda.empty_cache() # decode latents to pixel space img = self.vae_decode(img, height, width) if return_seed: return self.into_bytes(img, jpeg_quality=jpeg_quality), seed return self.into_bytes(img, jpeg_quality=jpeg_quality) @classmethod def load_pipeline_from_config_path( cls, path: str, flow_model_path: str = None, debug: bool = False ) -> "FluxPipeline": with torch.inference_mode(): config = load_config_from_path(path) if flow_model_path: config.ckpt_path = flow_model_path return cls.load_pipeline_from_config(config, debug=debug) @classmethod def load_pipeline_from_config( cls, config: ModelSpec, debug: bool = False ) -> "FluxPipeline": from float8_quantize import quantize_flow_transformer_and_dispatch_float8 with torch.inference_mode(): if debug: logger.info( f"Loading as prequantized flow transformer? {config.prequantized_flow}" ) models = load_models_from_config(config) config = models.config flux_device = into_device(config.flux_device) ae_device = into_device(config.ae_device) clip_device = into_device(config.text_enc_device) t5_device = into_device(config.text_enc_device) flux_dtype = into_dtype(config.flow_dtype) flow_model = models.flow if not config.prequantized_flow: flow_model = quantize_flow_transformer_and_dispatch_float8( flow_model, flux_device, offload_flow=config.offload_flow ) else: flow_model.eval().requires_grad_(False) return cls( name=config.version, clip=models.clip, t5=models.t5, model=flow_model, ae=models.ae, dtype=flux_dtype, verbose=False, flux_device=flux_device, ae_device=ae_device, clip_device=clip_device, t5_device=t5_device, config=config, debug=debug, )