import io from PIL import Image import numpy as np import torch class ImageEncoder: @torch.inference_mode() def encode_torch(self, img: torch.Tensor, quality=90): if img.ndim == 2: img = ( img[None] .contiguous() .repeat_interleave(3, dim=0) .contiguous() .clamp(0, 255) .type(torch.uint8) ) print(img.shape) elif img.ndim == 3: if img.shape[0] == 3: img = img.contiguous().clamp(0, 255).type(torch.uint8) elif img.shape[2] == 3: img = img.permute(2, 0, 1).contiguous().clamp(0, 255).type(torch.uint8) else: raise ValueError(f"Unsupported image shape: {img.shape}") else: raise ValueError(f"Unsupported image num dims: {img.ndim}") img = ( img.permute(1, 2, 0) .contiguous() .to(torch.uint8) .cpu() .numpy() .astype(np.uint8) ) im = Image.fromarray(img) iob = io.BytesIO() im.save(iob, format="JPEG", quality=95) iob.seek(0) return iob.getvalue()