--- tags: - flair - token-classification - sequence-tagger-model language: en datasets: - conll2000 inference: false --- ## English Chunking in Flair (default model) This is the standard phrase chunking model for English that ships with [Flair](https://github.com/flairNLP/flair/). F1-Score: **96,48** (corrected CoNLL-2000) Predicts 4 tags: | **tag** | **meaning** | |---------------------------------|-----------| | ADJP | adjectival | | ADVP | adverbial | | CONJP | conjunction | | INTJ | interjection | | LST | list marker | | NP | noun phrase | | PP | prepositional | | PRT | particle | | SBAR | subordinate clause | | VP | verb phrase | Based on [Flair embeddings](https://www.aclweb.org/anthology/C18-1139/) and LSTM-CRF. --- ### Demo: How to use in Flair Requires: **[Flair](https://github.com/flairNLP/flair/)** (`pip install flair`) ```python from flair.data import Sentence from flair.models import SequenceTagger # load tagger tagger = SequenceTagger.load("flair/chunk-english") # make example sentence sentence = Sentence("The happy man has been eating at the diner") # predict NER tags tagger.predict(sentence) # print sentence print(sentence) # print predicted NER spans print('The following NER tags are found:') # iterate over entities and print for entity in sentence.get_spans('np'): print(entity) ``` This yields the following output: ``` Span [1,2,3]: "The happy man" [− Labels: NP (0.9958)] Span [4,5,6]: "has been eating" [− Labels: VP (0.8759)] Span [7]: "at" [− Labels: PP (1.0)] Span [8,9]: "the diner" [− Labels: NP (0.9991)] ``` So, the spans "*The happy man*" and "*the diner*" are labeled as **noun phrases** (NP) and "*has been eating*" is labeled as a **verb phrase** (VP) in the sentence "*The happy man has been eating at the diner*". --- ### Training: Script to train this model The following Flair script was used to train this model: ```python from flair.data import Corpus from flair.datasets import CONLL_2000 from flair.embeddings import WordEmbeddings, StackedEmbeddings, FlairEmbeddings # 1. get the corpus corpus: Corpus = CONLL_2000() # 2. what tag do we want to predict? tag_type = 'np' # 3. make the tag dictionary from the corpus tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type) # 4. initialize each embedding we use embedding_types = [ # contextual string embeddings, forward FlairEmbeddings('news-forward'), # contextual string embeddings, backward FlairEmbeddings('news-backward'), ] # embedding stack consists of Flair and GloVe embeddings embeddings = StackedEmbeddings(embeddings=embedding_types) # 5. initialize sequence tagger from flair.models import SequenceTagger tagger = SequenceTagger(hidden_size=256, embeddings=embeddings, tag_dictionary=tag_dictionary, tag_type=tag_type) # 6. initialize trainer from flair.trainers import ModelTrainer trainer = ModelTrainer(tagger, corpus) # 7. run training trainer.train('resources/taggers/chunk-english', train_with_dev=True, max_epochs=150) ``` --- ### Cite Please cite the following paper when using this model. ``` @inproceedings{akbik2018coling, title={Contextual String Embeddings for Sequence Labeling}, author={Akbik, Alan and Blythe, Duncan and Vollgraf, Roland}, booktitle = {{COLING} 2018, 27th International Conference on Computational Linguistics}, pages = {1638--1649}, year = {2018} } ``` --- ### Issues? The Flair issue tracker is available [here](https://github.com/flairNLP/flair/issues/).