--- library_name: transformers license: apache-2.0 base_model: - flammenai/flammen22X-mistral-7B datasets: - flammenai/casual-conversation-DPO --- ![image/png](https://huggingface.co/nbeerbower/flammen13X-mistral-7B/resolve/main/flammen13x.png) # flammen23-mistral-7B A Mistral 7B LLM built from merging pretrained models and finetuning on [nbeerbower/bible-dpo](https://huggingface.co/datasets/nbeerbower/bible-dpo). Flammen specializes in exceptional character roleplay, creative writing, and general intelligence ### Method Finetuned using an A100 on Google Colab. [Fine-tune a Mistral-7b model with Direct Preference Optimization](https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac) - [Maxime Labonne](https://huggingface.co/mlabonne) ### Configuration System prompt, dataset formatting: ```python def chatml_format(example): # Format system system = "" systemMessage = "Recite the given verse from the Bible." system = "<|im_start|>system\n" + systemMessage + "<|im_end|>\n" # Format instruction prompt = "<|im_start|>user\nRecite " + example['citation'] + "<|im_end|>\n<|im_start|>assistant\n" # Format chosen answer chosen = example['text'] + "<|im_end|>\n" # Format rejected answer rejected = example['rejected'] + "<|im_end|>\n" return { "prompt": system + prompt, "chosen": chosen, "rejected": rejected, } dataset = load_dataset("nbeerbower/bible-dpo")['train'] # Save columns original_columns = dataset.column_names # Tokenizer tokenizer = AutoTokenizer.from_pretrained(model_name) tokenizer.pad_token = tokenizer.eos_token tokenizer.padding_side = "left" # Format dataset dataset = dataset.map( chatml_format, remove_columns=original_columns ) ``` LoRA, model, and training settings: ```python # LoRA configuration peft_config = LoraConfig( r=16, lora_alpha=16, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj'] ) # Model to fine-tune model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, load_in_4bit=True ) model.config.use_cache = False # Reference model ref_model = AutoModelForCausalLM.from_pretrained( model_name, torch_dtype=torch.bfloat16, load_in_4bit=True ) # Training arguments training_args = TrainingArguments( per_device_train_batch_size=4, gradient_accumulation_steps=4, gradient_checkpointing=True, learning_rate=5e-5, lr_scheduler_type="cosine", max_steps=5000, save_strategy="no", logging_steps=1, output_dir=new_model, optim="paged_adamw_32bit", warmup_steps=100, bf16=True, report_to="wandb", ) # Create DPO trainer dpo_trainer = DPOTrainer( model, ref_model, args=training_args, train_dataset=dataset, tokenizer=tokenizer, peft_config=peft_config, beta=0.1, max_prompt_length=512, max_length=1536, force_use_ref_model=True ) # Fine-tune model with DPO dpo_trainer.train() ```