#This is an example that uses the websockets api to know when a prompt execution is done #Once the prompt execution is done it downloads the images using the /history endpoint import websocket #NOTE: websocket-client (https://github.com/websocket-client/websocket-client) import uuid import json import urllib.request import urllib.parse server_address = "127.0.0.1:8188" client_id = str(uuid.uuid4()) def queue_prompt(prompt): p = {"prompt": prompt, "client_id": client_id} data = json.dumps(p).encode('utf-8') req = urllib.request.Request("http://{}/prompt".format(server_address), data=data) return json.loads(urllib.request.urlopen(req).read()) def get_image(filename, subfolder, folder_type): data = {"filename": filename, "subfolder": subfolder, "type": folder_type} url_values = urllib.parse.urlencode(data) with urllib.request.urlopen("http://{}/view?{}".format(server_address, url_values)) as response: return response.read() def get_history(prompt_id): with urllib.request.urlopen("http://{}/history/{}".format(server_address, prompt_id)) as response: return json.loads(response.read()) def get_images(ws, prompt): prompt_id = queue_prompt(prompt)['prompt_id'] output_images = {} while True: out = ws.recv() if isinstance(out, str): message = json.loads(out) if message['type'] == 'executing': data = message['data'] if data['node'] is None and data['prompt_id'] == prompt_id: break #Execution is done else: continue #previews are binary data history = get_history(prompt_id)[prompt_id] for node_id in history['outputs']: node_output = history['outputs'][node_id] images_output = [] if 'images' in node_output: for image in node_output['images']: image_data = get_image(image['filename'], image['subfolder'], image['type']) images_output.append(image_data) output_images[node_id] = images_output return output_images prompt_text = """ { "1": { "inputs": { "image": "/home/ml/Desktop/comfy_to_python/output.jpg", "upload": "image" }, "class_type": "LoadImage", "_meta": { "title": "Load Image" } }, "2": { "inputs": { "image": "/home/ml/Desktop/comfy_to_python/me.jpg", "upload": "image" }, "class_type": "LoadImage", "_meta": { "title": "Load Image" } }, "4": { "inputs": { "images": [ "5", 0 ] }, "class_type": "PreviewImage", "_meta": { "title": "Preview Image" } }, "5": { "inputs": { "enabled": true, "swap_model": "inswapper_128.onnx", "facedetection": "YOLOv5l", "face_restore_model": "none", "face_restore_visibility": 1, "codeformer_weight": 1, "detect_gender_input": "no", "detect_gender_source": "no", "input_faces_index": "0", "source_faces_index": "0", "console_log_level": 1, "input_image": [ "1", 0 ], "source_image": [ "2", 0 ] }, "class_type": "ReActorFaceSwap", "_meta": { "title": "ReActor 🌌 Fast Face Swap" } } } """ prompt = json.loads(prompt_text) # #set the text prompt for our positive CLIPTextEncode # prompt["6"]["inputs"]["text"] = "your instruction here" prompt["1"]["inputs"]["image"] = "/home/ml/Desktop/comfy_to_python/66.jpg" prompt["2"]["inputs"]["image"] = "/home/ml/Desktop/comfy_to_python/me.jpg" # # If you have a group input face image change the number here (1,2,3,..) if single then put 0. # prompt["5"]["inputs"]["input_faces_index"] = "" # # If you have a group source face image change the number here (1,2,3,..) if single then put 0. # prompt["5"]["inputs"]["source_faces_index"] = "" ws = websocket.WebSocket() ws.connect("ws://{}/ws?clientId={}".format(server_address, client_id)) images = get_images(ws, prompt) # Commented out code to display the output images: for node_id in images: for image_data in images[node_id]: from PIL import Image import io image = Image.open(io.BytesIO(image_data)) image.save("output1.jpg") # image.show()