import torch from torchvision import transforms from PIL import Image from watermark_remover import WatermarkRemover import numpy as np image_path = "path to your test image" # Replace with the path to your test image device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Load the trained model model = WatermarkRemover().to(device) model_path = "path to your model.pth" # Replace with the path to your saved model model.load_state_dict(torch.load(model_path, map_location=device)) model.eval() transform = transforms.Compose([transforms.Resize((256, 256)), transforms.ToTensor(),]) watermarked_image = Image.open(image_path).convert("RGB") original_size = watermarked_image.size input_tensor = transform(watermarked_image).unsqueeze(0).to(device) with torch.no_grad(): output_tensor = model(input_tensor) predicted_image = output_tensor.squeeze(0).cpu().permute(1, 2, 0).clamp(0, 1).numpy() predicted_pil = Image.fromarray((predicted_image * 255).astype(np.uint8)) predicted_pil = predicted_pil.resize(original_size, Image.Resampling.LANCZOS) predicted_pil.save("predicted_image.jpg", quality=100)